
Auton Agent Multi-Agent Syst (2010) 20:260–304
DOI 10.1007/s10458-009-9099-4

ASPECS: an agent-oriented software process
for engineering complex systems
How to design agent societies under a holonic perspective

Massimo Cossentino · Nicolas Gaud · Vincent Hilaire ·
Stéphane Galland · Abderrafiâa Koukam

Published online: 7 June 2009
Springer Science+Business Media, LLC 2009

Abstract Holonic multiagent systems (hmas) offer a promising software engineering
approach for developing complex open software systems. However the process of building
Multi-Agent Systems (mas) and hmas is mostly different from the process of building more
traditional software systems as it introduces new design and development challenges. This
paper introduces an agent-oriented software process for engineering complex systems called
aspecs. aspecs is based on a holonic organisational metamodel and provides a step-by-step
guide from requirements to code allowing the modelling of a system at different levels of
details using a set of refinement methods. This paper details the entire aspecs development
process and provides a set of methodological guidelines for each process activity. A complete
case study is also used to illustrate the design process and the associated notations. aspecs
uses uml as a modelling language. Because of the specific needs of agents and holonic
organisational design, the uml semantics and notation are used as reference points, but they
have been extended by introducing new specific profiles.

Keywords Agent oriented software engineering · Software development process ·
Design methodology · Holonic multiagent systems · Complex hierarchical systems

M. Cossentino · N. Gaud (B) · V. Hilaire · S. Galland · A. Koukam
Multiagent Systems Group, System and Transport Laboratory, University of Technology of Belfort
Montbéliard, 90010 Belfort Cedex, France
e-mail: nicolas.gaud@utbm.fr
URL: http://set.utbm.fr

M. Cossentino
ICAR Institute, National Research Council, Palermo, Italy
e-mail: massimo.cossentino@utbm.fr
URL: http://www.pa.icar.cnr.it/cossentino

V. Hilaire
e-mail: vincent.hilaire@utbm.fr

S. Galland
e-mail: stephane.galland@utbm.fr

A. Koukam
e-mail: abder.koukam@utbm.fr

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 261

1 Introduction

Software systems characteristics and expectations have fundamentally changed in the past
decade. They have increased both in size and complexity and are expected to be distrib-
uted, open and highly dynamic. Multiagent systems are emerging as an interesting software
engineering paradigm for developing complex software systems [37,57]. However, to deal
with all aspects of complex systems mas must deal with multiple levels of abstractions and
openness, which is not the case for most solutions [43].

According to Simon [51], complex systems often (if not always) exhibit a hierarchical con-
figuration.1 The idea is that the architecture of a complex system can be explained and under-
stood using hierarchical organisation structures as presented in [55]. Several metamodels
and methodologies have been proposed for mas [3]. However, most of them consider agents
as atomic entities. There is no intuitive or natural way to deal with hierarchical organisation
structures. Considering agents as composed entities thus enables the modelling of nested
hierarchies and proposes a solution to this problem.

In the reported landscape, this paper advocates the use of holonic multiagent systems
(hmas) in which holons are agents that may be composed of agents for developing complex
software systems. It introduces an agent-oriented software process for engineering complex
systems called aspecs. The process can be considered as an evolution of the PASSI [13]
process for modelling hmas and it also collects experiences about holon design coming from
the RIO approach [35]. The construction of the new process has been performed according
to the situational method engineering paradigm [34] and the approach described in [14]. The
complete description of the method adopted for building the aspecs process is out of the
scope of this paper. It is sufficient to say that the definition of the mas metamodel adopted
by the new process has been the first step and from this element all the others (activities,
guidelines, workflow) have been built according to this guideline [14,49]. This metamodel
defines the underlying concepts. A step-by-step guide from requirements to code allows the
modelling of a system at different levels of details. Going from each level to the next consists
in a refinement of the metamodel concepts.

Using whatever holonic perspective, the designer can model a system with entities of
different granularities. It is then possible to recursively model subcomponents of a complex
system until the requested tasks are manageable by atomic easy-to-implement entities. In
multiagent systems, the vision of holons is someway closer to the one that mas researchers
have of Recursive or Composed agents. A holon constitutes a way to gather local and global,
individual and collective points of view. A holon is a self-similar structure composed of
holons as sub-structures. A hierarchical structure composed of holons is called a holarchy.
A holon can be seen, depending on the level of observation, either as an autonomous atomic
entity or as an organisation of holons (this is often called the Janus effect [39]). Holonic
Systems have been already applied to a wide range of applications. Thus it is not surpris-
ing that a number of models and frameworks have been proposed for these systems, for
instance PROSA [6] and MetaMorph [50]. However, most of them are strongly attached to
their domains of application and use specific agent architectures.

For a successful application and deployment of mas, methodologies are essential. Several
methodologies and metamodels with a clear organisational vision have been already pro-
posed, like: agr [21], rio [35], gaia [57], ingenias [46], message [7], and soda [44].
Most of these methodologies recognise that the process of building mass is radically dif-
ferent from the process of building more traditional software systems. In particular, they all

1 Hierarchical here is meant as a “loose” hierarchy as presented by Simon.

123

262 Auton Agent Multi-Agent Syst (2010) 20:260–304

recognise (to varying extents) the idea that a mas can be conceived in terms of an organ-
ised society of individuals in which each agent plays specific roles and interacts with other
agents [57]. As pointed out by Ferber [21], the organisational approach offers a number
of advantages and can contribute to agent-oriented software development in the following
points: heterogeneity of languages, modularity, multiple possible architectures, and security
of applications.

The objective of the proposed work consists in trying to gather the advantages of organi-
sational approaches as well as those of the holonic vision in modelling complex systems. The
result is a set of organisation-oriented abstractions that have been integrated into a complete
methodological process called aspecs.

In this paper, the aspecs design process is illustrated by using a case study lying in the
area of Holonic Industrial Systems. This case study aims at helping the manager of one of
the most important automotive manufacturing plant in eastern France to evaluate different
configurations for the production plant. Each configuration consists in a different allocation
of manufacturing tasks to plant buildings. This case study will be introduced in Sect. 2.3 after
the description of the aspecs metamodel. In the rest of this paper, we refer to this case study
by labelling it AMP (Automotive Manufacturing Plant).

The paper is organised as follows. Section 2 provides an early glimpse of the aspecs pro-
cess and modelling approach. It also introduces the metamodel and the core concepts of the
methodology. Each phase of the aspecs software process and their associated activities are
then described in Sects. 3–5, while they are applied to the AMP case study. An evaluation and
comparison between aspecs and nine agent-oriented software engineering methodologies is
presented in Sect. 6. Finally, Sect. 7 summarises the results of the paper and describes some
future work directions.

2 A quick overview of ASPECS

aspecs is a step-by-step requirements to code software engineering process based on a
metamodel, which defines the main concepts for the proposed hmas analysis, design and
development. It integrates design models and philosophies from both object- and agent-
oriented software engineering (OOSE and AOSE) and is largely inspired by the passi [13]
and rio [35] approaches. The target scope for the proposed approach can be found in com-
plex systems and especially hierarchical complex systems. The main vocation of aspecs is
towards the development of societies of holonic (as well as not-holonic) multiagent systems.
The idea underpinning the aspecs design process can be described in a few fundamental
choices that characterise the vision of the authors and represent some of the main scientific
contributions of this work:

1. The aspecs design process explicitly deals with the design of open, dynamic and com-
plex systems. The main limit in its application scope is that we assume the system can
be hierarchically decomposed in sub-systems (nearly-decomposable systems [51]).

2. The adoption of an organisational approach. Functionalities to be realised are assigned
to organisations that accomplish them also by means of the hierarchical decomposition
of the organisation structure in sub-organisations (holonic paradigm). An organisation-
oriented analysis is applied by using two different decomposition strategies: vertical and
horizontal. Vertical decomposition allows to delegate the responsibility of an organisa-
tion at level n to sub-organisations at level n − 1 (lower abstraction level, finer grained
organisations). Horizontal decomposition allows the collaboration of several entities at
the same level of abstraction in order to fulfil the required functionalities.

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 263

3. Domain related ontological knowledge is used as a tool for enhancing the quality of
design. This has been already adopted in some previous methodologies [36] but it is
lacking in most modern approaches. We think that in dealing with intelligent agents it
is particularly important to explicitly catch an ontological model of the problem and
solution domains; this allows an easy application of several AI techniques as well as the
adoption of semantic-based communications among agents.

4. We considered three main levels of abstractions in design, called models according to
the model-driven engineering terminology. They are inherited from PASSI metamodel
domains and they are: problem, agency and solution. Concepts of the problem domain
are used to model system requirements in terms of organisations and interacting roles;
concepts of the agency domain are the result of a set of transformations from the previous
domain and are used to depict an agent-oriented solution; concepts of the solution domain
are again the result of some transformations and are devoted to design a platform-specific
solution at the code level.

5. The joint use of holonic and agency concepts to respectively model the two different
faces of an entity that composes the system. Holonic concepts focus on the modelling of
collective and compositional aspects of the system. While agent-related concepts focus
on modelling individual aspects and personal goals of the entities composing the system.

Further details about these choices and their consequences on the resulting process will
be provided throughout the paper. In the following subsections we will briefly introduce the
aspecs process structure, the aspecs metamodel with the definitions of the most important
elements composing it and, finally, the case study that will be used throughout the paper.

2.1 aspecs: the process

The conception of the aspecs process has been based on concepts coming from Situational
Method Engineering [34] and the work done by some of the authors in applying this par-
adigm to agent-oriented design methodologies [14,49]. The resulting aspecs process also
benefits from experiments and theoretical studies done on passi and Agile passi [9,13]. Just
like them, aspecs is based on an iterative-incremental life-cycle, as it is for other widely
accepted approaches in both the agent- [4,40,45,46] and object-oriented contexts.

As regards its deliverables, aspecs uses uml as a modelling language but because of the
specific needs of agent and holonic organisational design, the uml semantics and notation are
used as reference points, and they have been extended especially by the introduction of new
profiles. In fact uml diagrams are often used to represent concepts that are not completely
considered in uml and the notation has been modified to better fulfil the need of modelling
agents.

The aspecs process structure is based on the Software Process Engineering Metamodel
(spem) specification proposed by omg [53]. This specification is based on the idea that a soft-
ware development process is a collaboration between abstract active entities, called Roles that
perform operations, called Activities, on concrete, tangible entities, called Work Products.
According to this metamodel, the aspecs process is based on three main granularity levels
of process components: Phases, Activities and Tasks. A Phase delivers a composite work
product, composed by one or more documents that can belong to different work product
types; it is composed of a number of activities that are in turn decomposable into tasks. An
Activity delivers a main work product such as a diagram or a text document, and it is com-
posed of a number of Tasks. A Task contributes to the production of a work product usually
by delivering a part of it, and it instantiates/relates/refines mas metamodel elements.

123

264 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 1 Roadmap of the aspecs process (phases/activities and their goals)

The description of the aspecs software development process has been split in two dif-
ferent levels: in the first one (discussed in this section) we describe the process at the phase
level; in the second one we report the details of each phase, with the associated activities,
in a separate section (see Sects. 3–5). Because of space concerns, each activity has been
only briefly described but the interested reader may refer to the aspecs website2 for a more
complete description including another case study.

The aspecs life cycle consists of three phases that are briefly described below. Phases
are also depicted in Fig. 1 where each activity is reported together with the main goal(s) it
pursues.

2 aspecs: http://www.aspecs.org/.

123

http://www.aspecs.org/

Auton Agent Multi-Agent Syst (2010) 20:260–304 265

The System Requirements phase aims at identifying a hierarchy of organisations, whose
global behaviour may fulfil the system requirements under the chosen perspective. It starts
with a Domain Requirements Description activity where requirements are identified by using
classical techniques such as use cases. Domain knowledge and vocabulary associated to the
problem domain are then collected and explicitly described in the Problem Ontology Descrip-
tion activity. Then, requirements are associated to newly defined organisations. Each organi-
sation will therefore be responsible for exhibiting a behaviour that fulfils the requirements it
is responsible for. This activity is called Organisation Identification and it produces an initial
hierarchy of organisations that will later be extended and updated, with further iterations, in
order to obtain the global organisation hierarchy representing the system structure and behav-
iour. The behaviour of each organisation is realised by a set of interacting roles whose goals
consist in contributing to the fulfilment of (a part of) the requirements of the organisation
within which they are defined. In order to design modular and reusable organisation models,
roles are specified without making any assumptions on the structure of the agent that may
play them. To meet this objective, the concept of capacity has been introduced. A capacity is
an abstract description of a know-how, i.e. a competence of a role. Each role requires certain
skills to define its behaviour and these skills are modelled by means of a capacity. Besides,
an entity that wants to play a role has to be able to provide a concrete realisation for all the
capacities required by the role. Finally, the last step of the system requirements phase: the
capacity identification activity, aims at determining the capacities required by each role.

The second phase is the Agent Society Design phase that aims at designing a society
of agents whose global behaviour is able to provide an effective solution to the problem
described in the previous phase and to satisfy associated requirements. The objective is to
provide a model in terms of social interactions and dependencies among entities (holons
and agents). Previously identified elements such as ontology, roles and interactions, are now
refined from the social point of view (interactions, dependencies, constraints, etc). At the
end of this design phase, the hierarchical organisation structure is mapped into a holarchy
(hierarchy of holons) in charge of realising the expected behaviours. Each of the previously
identified organisations is instantiated in form of groups. Corresponding roles are then asso-
ciated to holons or agents. This last activity also aims at describing the various rules that
govern the decision-making process performed inside composed holons as well as the holons’
dynamics in the system (creation of a new holon, recruitment of members, etc). All of these
elements are finally merged to obtain the complete set of holons involved in the solution.

The third and last phase, namely Implementation and Deployment firstly aims at imple-
menting the agent-oriented solution designed in the previous phase by deploying it to the
chosen implementation platform, in our case, Janus. Secondly, it aims at detailing how to
deploy the application over various computational nodes (Janus kernels in our experiments).
Based on Janus, the implementation phase details activities that allow the description of the
solution architecture and the production of associated source code and tests. It also deals with
the solution reusability by encouraging the adoption of patterns. The code reuse activity aims
at integrating the code of these patterns and adapting the source code of previous applications
inside the new one. It is worth to note that although we will refer to a Janus-based implemen-
tation, system developed by using other platforms can be designed as well with the described
process. This phase ends with the description of the deployment configuration; it also details
how the previously developed application will be concretely deployed; this includes studying
distribution aspects, holons physical location(s) and their relationships with external devices
and resources. This activity also describes how to perform the integration of parts of the
application that have been designed and developed by using other modelling approaches (i.e.
object-oriented ones) with parts designed with aspecs.

123

266 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 2 The UML diagram of the aspecs metamodel Problem Domain

2.2 aspecs: the metamodel and key concepts

aspecs has been built by adopting the Model Driven Architecture (MDA) [42] and thus we
defined three levels of models each referring to a different metamodel. We also label the
three metamodels “domains” thus maintaining the link with the PASSI metamodel that was
one of our inspiration sources. The three domains we define are:

The Problem Domain. It provides the organisational description of the problem indepen-
dently of a specific solution. The concepts introduced in this domain are mainly used
during the analysis phase and at the beginning of the design phase (see Fig. 2).
The Agency Domain. It introduces agent-related concepts and provides a description
of the holonic, multiagent solution resulting from a refinement of the Problem Domain
elements (see Fig. 3).
The Solution Domain is related to the implementation of the solution on a specific
platform. This domain is thus dependent on a particular implementation and deploy-
ment platform (see Fig. 4). In our case, this part of the process is based on the Janus
platform that we specifically designed to ease the implementation of holonic and organ-
isational models. A complete description of the Janus platform would take too much
space to be dealt by this paper and therefore we prefer to present only the most signif-
icant Janus issues, the interested reader can find more details in [26] and on the Janus
website.3

The following sub-sections detail the three domain metamodels and fundamental concepts
within them. A complete description of all the elements reported in the metamodels is present
on the aspecs website and will not be reported here.

2.2.1 Problem Domain

The Problem Domain metamodel (see Fig. 2) includes elements that are used to catch the
problem requirements and perform their initial analysis: Requirements (both functional and

3 Janus: http://www.janus-project.org/.

123

http://www.janus-project.org/

Auton Agent Multi-Agent Syst (2010) 20:260–304 267

Fig. 3 The UML diagram of the aspecs metamodel Agency Domain

Fig. 4 The UML diagram of the aspecs metamodel Solution Domain

non-functional) are related to the organisation that fulfils them. An organisation is com-
posed of Roles, which are interacting within scenarios while executing their Role plans. An
organisation has a context that is described in terms of an ontology. Roles participate to the
achievement of their organisation goals by means of their Capacities. In this subsection we
will discuss the three most important elements of this domain: organisation, role, capacity.
Definitions of the others can be found in Table 1 and on the aspecs website.

An organisation is defined by a collection of roles that take part in systematic institutiona-
lised patterns of interactions with other roles in a common context. This context consists
in a shared knowledge, social rules/norms, social feelings, and it is defined according to an
ontology. The aim of an organisation is to fulfil some requirements. An organisation can be
seen as a tool to decompose a system and it is structured as an aggregate of several disjoint
partitions. Each organisation aggregates several roles and it may itself be decomposed into
sub-organisations.

123

268 Auton Agent Multi-Agent Syst (2010) 20:260–304

Table 1 Definition of the problem domain concepts

Concept Definition

Ontology An explicit specification of a conceptualisation of a knowledge domain
[30]. An ontology is composed of abstract ontology elements having
three possible concrete types: Concept, Predicate or Action

Concept A category, an abstraction that shortens and summarises a
variety/multiplicity of objects by generalising common identifiable
properties

Predicate Assertions on concepts properties

Action A change realised by an entity that modifies one or more properties of one
or more concepts

Organisation An organisation is defined by a collection of roles that take part in
systematic institutionalised patterns of interactions with other roles in a
common context. This context consists in shared knowledge and social
rules/norms, social feelings, and is defined according to an ontology. The
aim of an organisation is to fulfil some requirements

Role An expected behaviour (a set of role tasks ordered by a plan) and a set of
rights and obligations in the organisation context. The goal of each Role
is to contribute to the fulfilment of (a part of) the requirements of the
organisation within which it is defined. A role can be instantiated either
as a Common Role or Boundary Role. A Common Role is a role located
inside the designed system and interacting with either Common or
Boundary Roles. A Boundary Role is a role located at the boundary
between the system and its outside and it is responsible for interactions
happening at this border (i.e. GUI, Database, etc)

Interaction A dynamic, not a priori known sequence of events (a specification of some
occurrence that may potentially trigger effects on the system) exchanged
among roles, or between roles and entities outside the agent system to be
designed. Roles may react to the events according to theirs behaviours

Capacity A specification of a transformation of a part of the designed system or its
environment. This transformation guarantees resulting properties if the
system before the transformation satisfies a set of constraints. It may be
considered as a specification of the pre- and post-conditions of a goal
achievement

Role Task An activity that defines a part of a role behaviour. A Role Task may be
atomic or composed by a coordinated sequence of subordinate Role
Tasks. The definition of these Role Tasks can be based on capacities,
required by roles

Role plan The behaviour of a Role is specified within a Role plan. It is the description
of how to combine and order Role Tasks and interactions to fulfil a (part
of a) requirement

Scenario Describes a sequence of role interactions, which fulfills a (part of)
requirement

In our approach, a Role defines an expected behaviour as a set of role tasks ordered by a
plan, and a set of rights and obligations in the organisation context. The goal of each Role
is to contribute to the fulfilment of (a part of) the requirements of the organisation within
which it is defined.

In order to cope with the need of modelling system boundaries and system interactions
with the external environment, we introduced two different types of roles: Common Role and
Boundary Role. A Common Role is located inside the designed system and interacts with
either Common or Boundary Roles. A Boundary Role is located at the boundary between
the system and its environment and it is responsible for interactions happening at this border
(i.e. GUI, Database wrappers, etc).

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 269

Roles use their capacities for participating to organisational goals fulfilment; a Capacity
is a specification of a transformation of a part of the designed system or its environment.
This transformation guarantees resulting properties if the system satisfies a set of constraints
before the transformation. It may be considered as a specification of the pre- and post-
conditions of a goal achievement. This concept is a high level abstraction that proved to be
very useful for modelling a portion of the system capabilities without making any assumption
about their implementations as it should be at the initial analysis stage.

A Capacity describes what a behaviour is able to do or what a behaviour may require
to be defined. As a consequence, there are two main ways of using this concept: (i) it can
specify the result of some role interactions, and consequently the results that an organisation
as a whole may achieve with its behaviour. In this sense, it is possible to say that an organi-
sation may exhibit a capacity. (ii) capacities may also be used to decompose complex role
behaviours by abstracting and externalising a part of their tasks into capacities (for instance
by delegating these tasks to other roles). In this case the capacity may be considered as a
behavioural building block that increases modularity and reusability.

In order to complete the description of the possibilities offered by the application of our
definitions of Organisation, Roles and Capacity, let us consider the need of modelling a
complex system behaviour. We assume it is possible to decompose it from a functional point
of view, and in this way we obtain a set of more finer grained (less complex) behaviours.
Depending on the considered level of abstraction, an organisation can be seen either as a uni-
tary behaviour or as a set of interacting behaviours. The concept of organisation is inherently
a recursive one [20]. The same duality is also present in the concept of holon as it will be
shown later in this article. Both are often illustrated by the same analogy: the composition
of the human body. The human body, from a certain point of view, can be seen as a single
entity with an identity, its own behaviour and personal emotions. Besides, it may also be
regarded as a cluster/aggregate of organs, which are themselves made up of cells, and so on.
At each level of this composition hierarchy, specific behaviours emerge. The body has an
identity and a behaviour that is unique for each individual. Each organ has a specific mis-
sion: filtration for kidneys, extraction of oxygen for lungs or blood circulation for the heart.
An organisation is either an aggregation of interacting behaviours, and a single behaviour
composing an organisation at an upper level of abstraction; the resulting whole constitutes a
hierarchy of behaviours that has specific goals to be met at each level. This recursive defini-
tion of organisation will form the basis of the analysis activities performed within aspecs.
In most systems, it is somewhat arbitrary as to where we leave off the partitioning and what
subsystems we take as elementary (cf. [51, chap. 8]). This remains a pure design choice.

2.2.2 Agency Domain

The Agency Domain metamodel includes the elements that are used to define an agent-
oriented solution for the problem analysed in the previous stage. By adopting an organi-
sational approach, the solution will be mainly composed of the necessary social structures
designed in a multi-perspective way. In this subsection we will discuss the most important
elements of this domain. Definitions of the others can be found in Table 2 and further details
on the aspecs website.

Probably holon is the central element of the aspecs design process. The term Holon was
coined from the greek ‘holos’ meaning ‘whole’, and the suffix ‘on’ meaning ‘part’ or entity
(for instance as a proton or neutron is a part of an atom); hence a holon is a whole to those
parts beneath it in the hierarchy but at the same time a part to those wholes above it [39].

123

270 Auton Agent Multi-Agent Syst (2010) 20:260–304

Ta
bl

e
2

D
ef

in
iti

on
of

th
e

ag
en

cy
do

m
ai

n
co

nc
ep

ts

C
on

ce
pt

D
ef

in
iti

on

C
om

m
un

ic
at

io
n

A
n

in
te

ra
ct

io
n

be
tw

ee
n

tw
o

or
m

or
e

ro
le

s
w

he
re

th
e

co
nt

en
t(

la
ng

ua
ge

,o
nt

ol
og

y,
an

d
en

co
di

ng
)

an
d

th
e

se
qu

en
ce

of
co

m
m

un
ic

at
io

n
ac

ts
(p

ro
to

co
l)

ar
e

ex
pl

ic
itl

y
de

ta
ile

d.
A

co
m

m
un

ic
at

io
n

is
co

m
po

se
d

of
m

es
sa

ge
s

ex
pr

es
si

ng
co

m
m

un
ic

at
iv

e
ac

ts
[2

3,
24

].
In

a
co

m
m

un
ic

at
io

n,
pa

rt
ic

ip
an

ts
ar

e
A

ge
nt

R
ol

es
an

d
th

e
kn

ow
le

dg
e

ex
ch

an
ge

d
be

tw
ee

n
th

em
is

ex
pl

ic
itl

y
re

pr
es

en
te

d
by

a
se

to
f

on
to

lo
gy

el
em

en
ts

.A
P

ro
to

co
ld

efi
ne

s
a

se
qu

en
ce

of
ex

pe
ct

ed
m

es
sa

ge
co

m
m

un
ic

at
iv

e
ac

ts
an

d
re

pr
es

en
ts

a
co

m
m

on
pa

tte
rn

of
co

m
m

un
ic

at
io

n,
a

hi
gh

-l
ev

el
st

ra
te

gy
th

at
go

ve
rn

s
th

e
ex

ch
an

ge
of

in
fo

rm
at

io
n

be
tw

ee
n

A
ge

nt
R

ol
es

G
ro

up
A

n
in

st
an

ce
in

th
e

A
ge

nc
y

D
om

ai
n

of
an

O
rg

an
is

at
io

n
de

fin
ed

in
th

e
Pr

ob
le

m
D

om
ai

n.
It

is
us

ed
to

m
od

el
an

ag
gr

eg
at

io
n

of
A

ge
nt

R
ol

es
pl

ay
ed

by
ho

lo
ns

A
ge

nt
ro

le
A

n
in

st
an

ce
of

th
e

Pr
ob

le
m

D
om

ai
n

R
ol

e.
It

is
a

be
ha

vi
ou

r
(e

xp
re

ss
ed

by
a

se
to

f
A

ge
nt

Ta
sk

s)
an

d
it

ow
ns

a
se

to
f

ri
gh

ts
an

d
ob

lig
at

io
ns

in
a

sp
ec

ifi
c

gr
ou

p
co

nt
ex

t.
A

ge
nt

R
ol

es
in

te
ra

ct
w

ith
ea

ch
ot

he
r

by
us

in
g

co
m

m
un

ic
at

io
ns

w
ith

in
th

e
co

nt
ex

to
f

th
e

gr
ou

p
th

ey
be

lo
ng

to
.S

ev
er

al
A

ge
nt

R
ol

es
ar

e
us

ua
lly

ag
gr

eg
at

ed
in

th
e

A
ut

on
om

ou
s

E
nt

it
y

th
at

pl
ay

s
th

em
.A

n
A

ge
nt

R
ol

e
m

ay
be

re
sp

on
si

bl
e

fo
r

pr
ov

id
in

g
on

e
of

m
or

e
se

rv
ic

es
to

th
e

re
m

ai
ni

ng
pa

rt
of

th
e

so
ci

et
y

H
ol

on
ic

gr
ou

p
A

gr
ou

p
th

at
is

de
vo

te
d

to
co

nt
ai

n
ho

lo
ni

c
ro

le
s

an
d

ta
ke

s
ca

re
of

th
e

ho
lo

n
in

te
rn

al
de

ci
si

on
-m

ak
in

g
pr

oc
es

s
(c

om
po

se
d-

ho
lo

n’
s

go
ve

rn
m

en
t)

.H
ol

on
ic

ro
le

s
ar

e
us

ed
to

re
pr

es
en

ti
n

an
or

ga
ni

sa
tio

na
lw

ay
th

e
no

tio
n

of
m

od
er

at
ed

gr
ou

p
(s

ee
[2

8]
).

T
he

y
de

sc
ri

be
th

e
le

ve
lo

f
au

th
or

ity
of

a
m

em
be

r
in

si
de

th
e

ho
lo

n
m

em
be

rs
co

m
m

un
ity

an
d

th
e

de
gr

ee
of

co
m

m
itm

en
to

f
a

m
em

be
r

to
its

su
pe

r-
ho

lo
n

A
ge

nt
ta

sk
A

n
A

ge
nt

Ta
sk

is
a

re
fin

em
en

to
f

a
Pr

ob
le

m
D

om
ai

n
R

ol
e

Ta
sk

.I
ti

s
a

po
rt

io
n

of
a

ro
le

be
ha

vi
ou

r
an

d
it

m
ay

be
co

m
po

se
d

by
ot

he
r

A
ge

nt
Ta

sk
s

or
at

om
ic

A
ge

nt
A

ct
io

ns
.

It
m

ay
co

nt
ri

bu
te

to
pr

ov
id

e
(a

po
rt

io
n

of
)

an
A

ge
nt

R
ol

e’
s

se
rv

ic
e

A
ge

nt
ac

tio
n

T
he

at
om

ic
co

m
po

si
ng

un
it

of
a

be
ha

vi
ou

r.
A

n
ac

tio
n

ta
ke

s
a

se
to

f
in

pu
ts

an
d

co
nv

er
ts

th
em

in
to

a
se

to
f

ou
tp

ut
s,

th
ou

gh
ei

th
er

or
bo

th
se

ts
m

ay
be

em
pt

y.
A

n
ex

am
pl

e
of

th
e

m
os

tb
as

ic
A

ge
nt

A
ct

io
n

co
ns

is
ts

in
in

vo
ki

ng
a

ca
pa

ci
ty

or
a

se
rv

ic
e

re
qu

ir
in

g
th

e
sa

m
e

in
pu

ts
A

ut
on

om
ou

s
en

tit
y

A
n

ab
st

ra
ct

ra
tio

na
le

nt
ity

th
at

ad
op

ts
a

de
ci

si
on

in
or

de
r

to
ob

ta
in

th
e

sa
tis

fa
ct

io
n

of
on

e
or

m
or

e
of

its
ow

n
go

al
s.

A
n

au
to

no
m

ou
s

en
tit

y
m

ay
pl

ay
a

se
to

f
A

ge
nt

R
ol

es
w

ith
in

va
ri

ou
s

gr
ou

ps
.T

he
se

ro
le

s
in

te
ra

ct
w

ith
ea

ch
ot

he
r

in
th

e
sp

ec
ifi

c
co

nt
ex

tp
ro

vi
de

d
by

th
e

en
tit

y
its

el
f.

T
he

en
tit

y
co

nt
ex

ti
s

gi
ve

n
by

th
e

kn
ow

le
dg

e,
th

e
ca

pa
ci

tie
s

ow
ne

d
by

th
e

en
tit

y
its

el
f.

R
ol

es
sh

ar
e

th
is

co
nt

ex
tb

y
th

e
si

m
pl

e
fa

ct
of

be
in

g
pa

rt
of

th
e

sa
m

e
en

tit
y

A
ge

nt
A

n
au

to
no

m
ou

s
en

tit
y

th
at

ha
s

sp
ec

ifi
c

in
di

vi
du

al
go

al
s

an
d

th
e

in
tr

in
si

c
ab

ili
ty

to
re

al
is

e
so

m
e

ca
pa

ci
tie

s

G
oa

l
A

de
sc

ri
pt

io
n

of
an

ob
je

ct
iv

e
to

pu
rs

ue
an

d
re

pr
es

en
ts

an
ab

st
ra

ct
io

n
of

a
pr

oj
ec

te
d

st
at

e
of

af
fa

ir
s

to
ob

ta
in

In
di

vi
du

al
go

al
A

go
al

pu
rs

ue
d

by
an

in
di

vi
du

al
ag

en
tt

ha
tm

ay
be

re
la

te
d

to
its

pe
rs

on
al

de
si

re
s

or
in

te
nt

io
ns

.T
hi

s
ag

en
tw

ill
de

lib
er

at
e

to
de

te
rm

in
e

a
pl

an
or

a
st

ra
te

gy
to

ac
hi

ev
e

its
in

di
vi

du
al

go
al

s
C

ol
le

ct
iv

e
go

al
A

go
al

pu
rs

ue
d

by
a

co
m

m
un

ity
of

in
di

vi
du

al
s,

w
hi

ch
ha

s
th

e
co

m
m

itm
en

to
f

(a
pa

rt
of

)
th

e
co

m
m

un
ity

m
em

be
rs

.U
su

al
ly

m
em

be
rs

co
m

m
it

to
co

lle
ct

iv
e

go
al

s
be

ca
us

e
ac

hi
ev

in
g

th
es

e
go

al
s

co
nt

ri
bu

te
s

to
th

e
ac

hi
ev

em
en

to
f

m
em

be
rs

’
in

di
vi

du
al

go
al

s
Se

rv
ic

e
It

pr
ov

id
es

th
e

re
su

lt
of

th
e

ex
ec

ut
io

n
of

a
ca

pa
ci

ty
th

us
ac

co
m

pl
is

hi
ng

a
se

to
f

fu
nc

tio
na

lit
ie

s
on

be
ha

lf
of

its
ow

ne
r:

a
ro

le
,a

gr
ou

p,
an

ag
en

to
r

a
ho

lo
n.

T
he

se
fu

nc
tio

na
lit

ie
s

ca
n

be
ef

fe
ct

iv
el

y
co

ns
id

er
ed

as
th

e
co

nc
re

te
im

pl
em

en
ta

tio
n

of
va

ri
ou

s
ca

pa
ci

tie
s.

A
ro

le
ca

n
th

us
pu

bl
is

h
so

m
e

of
its

ca
pa

ci
tie

s
an

d
ot

he
r

m
em

be
rs

of
th

e
gr

ou
p

ca
n

pr
ofi

to
f

th
em

by
m

ea
ns

of
a

se
rv

ic
e

ex
ch

an
ge

.S
im

ila
rl

y
a

gr
ou

p,
ab

le
to

pr
ov

id
e

a
co

lle
ct

iv
e

ca
pa

ci
ty

ca
n

sh
ar

e
it

w
ith

ot
he

r
gr

ou
ps

by
pr

ov
id

in
g

a
se

rv
ic

e.
A

ca
pa

ci
ty

is
an

in
te

rn
al

as
pe

ct
of

an
or

ga
ni

sa
tio

n
or

an
ag

en
t,

w
hi

le
th

e
se

rv
ic

e
is

de
si

gn
ed

to
be

sh
ar

ed
be

tw
ee

n
va

ri
ou

s
or

ga
ni

sa
tio

n
or

en
tit

ie
s.

To
pu

bl
is

h
a

ca
pa

ci
ty

an
d

th
us

al
lo

w
ot

he
r

en
tit

ie
s

to
be

ne
fit

fr
om

it,
a

se
rv

ic
e

is
cr

ea
te

d
R

es
ou

rc
e

T
he

ab
st

ra
ct

io
n

of
an

en
vi

ro
nm

en
ta

le
nt

ity
.I

tm
ay

be
m

an
ip

ul
at

ed
by

ro
le

s
th

ro
ug

h
sp

ec
ifi

c
ca

pa
ci

tie
s

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 271

Fig. 5 Horizontal and vertical holon views

Each holon is an autonomous entity that has collective goals (shared by all members)
and may be composed by other holons, called members or sub-holons. A composed holon is
called super-holon. A super-holon is not only characterised by its members but also by their
interaction patterns. This implies that two super-holons may be created from the same set of
sub-holons if their members are interacting in a different way.

A super-holon contains at least one single holonic group to define how members get organ-
ised and how they govern the super-holon, and a set of production groups (at least one) to
describe how members interact and how they coordinate their actions to fulfil the super-holon
objectives. An example of a super-holon typical structure is reported in Fig. 5.

Each super-holon member plays at least one role in the holonic group and various roles in
production groups (at least one role in one production group). The holonic group describes
the government of a holon and its structure in terms of authority/power repartition. This
group represents a moderated group (see [28]) in terms of roles (called holonic roles) and
their interactions. In a moderated group, a subset of the members will represent all the sub-
holons in the outside world. This management structure was adopted due to the wide range
of configurations it allows. Three holonic roles have been defined to describe the status of a
member inside a super-holon and one role to describe the status of non-members:

Representative or holon interface: it is the externally visible part of a super-holon; it is
an interface between the outside world (same level or upper level) and the other holon
members. It may represent other members in taking decisions or accomplishing tasks
(i.e. recruiting members, translating information, etc). More than one member can play
the Representative role at the same time.
Head or decision maker: it represents a privileged status conferring a certain level of
authority in taking decisions inside the holon.
Peer or default member: Normally in charge of doing tasks assigned by Heads, a Peer
can also have an administrative duty, and it may be employed in the decision-making
process. It depends on the configuration chosen for modelling the super-holon.
Stand-Alone or non-member: This role represents a particular status inside a holonic
system. In contrast to the previous holonic roles, it represents the way a member sees a
non-member holon. Stand-Alone holons may interact with the Representatives to request
their admission as new members of an existing super-holon.

123

272 Auton Agent Multi-Agent Syst (2010) 20:260–304

The three first holonic roles describe the status of a member within a super-holon and
participate in defining the holonic organisation. Each of these roles can be played by one
or more members, knowing that any super-holon must have at least one Representative and
one Head. The roles Head and Peer are exclusive between them, while Representative may
be played simultaneously with one of the two others. Each of these member holonic roles
is parameterised using a specific status that specifies if the corresponding holon member is
shared between various super-holons. The Part status represents members belonging to only
one super-holon while the Multi-Part status represents sub-holons belonging to more than
one super-holon.

At the finest grained level of abstraction (that also means the first level of composition),
holons are composed by groups and their associated roles are played by agents. From a
motivational point of view agents and holons are different: an agent has Individual Goals,
thus it is self-interested in reaching some goals. If the accomplishment of these goals pre-
scribes or encourages the association to a holon, then the agent will try to join it and play
one of the roles defined within it. On the other hand, a holon is motivated by Collective
Goals that corresponds to a set of goals commonly shared among its members. A holon
acts in the interest of the community of members that it embodies at an upper abstraction
level.

The Agency Domain metamodel includes several other elements that because of space
concerns we do not discuss here. Their definitions are reported in Table 2. In the next section
we describe the elements of the Solution domain that are used to effectively code the solution
designed with the elements described up to now.

2.2.3 Solution domain

The solution domain metamodel contains elements used for the implementation of the
designed solution in the chosen platform. These elements are general enough to be applied to
several existing platforms with minor or no changes but nonetheless the most suitable choice
is Janus that directly inspired this portion of the metamodel.

janus (see [26]) was designed to facilitate the transition between the design and imple-
mentation phases of holonic systems. It is implemented in Java and it supports the direct
implementation of the five key concepts used in the design phase: organisation, group, role,
holon and capacity.

Organisation is implemented as a first-class entity (a singleton class in the object-
oriented meaning of the word), which includes a set of role classes. An organisation can
be instantiated in the form of groups. Each group contains a set of instances of different role
classes associated with the organisation it belongs to. The number of authorised instances
for each role is specified in the organisation description. One of the most interesting features
of janus consists in the implementation of roles as first class entities. A role is seen as a
full-fledged class, and each role is implemented independently of the entities that play it.
Such an implementation facilitates the reuse of organisations in other solutions, but it also
allows a wide dynamics for roles.

Janus defines two main types of holon: HeavyHolon (threaded) and LightHolon
(non-threaded). A HeavyHolon has its own execution resources (one thread per holon), and it
can therefore operate independently. The LightHolon is associated with synchronous execu-
tion mechanisms and it proved useful in some multiagent-based simulations. This approach
resembles the synchronous engine of Madkit.4 Holons can simultaneously play multiple roles

4 see http://www.madkit.net/site/madkit/doc/devguide/synchronous.html.

123

http://www.madkit.net/site/madkit/doc/devguide/ synchronous.html

Auton Agent Multi-Agent Syst (2010) 20:260–304 273

in several groups; they can dynamically access to new roles and leave the ones that are no
longer in use. When a holon starts playing a role, it obtains an instance of the class of this
role that it stores in its role container; when it leaves a role, the corresponding instance is
removed. To access or leave a role, a holon must meet the access and liberation conditions of
the role and those of the corresponding group. This mechanism provides many advantages
in terms of security, since holons have access to the behaviour of a role and thus get the
corresponding executable code only if they fulfil these conditions. Agents are represented by
atomic holons (non-composed ones).

The notion of capacity enables the representation of holons’ competencies. Each holon
has, since its creation, a set of basic skills, including the ability to play roles (and therefore
communicate), to obtain information on existing organisations and groups within the plat-
form, create other holons, and obtain new capacities. The capacity concept is an interface
between the holon and the roles it plays. The role requires some capacities to define its
behaviour, which can then be invoked in one of the tasks that make up the behaviour of the
role. The set of capacities required by a role are specified in the role access conditions. A
capacity can be implemented in various ways, and each of these implementations is modelled
by the notion of Capacity Implementation. This concept is the operational representation of
the service concept defined in the Agency domain. Agents own the finest grained capacity
implementations; these can be composed within the holons where these agents play roles in
order to obtain more complex behaviours.

Because of space concerns, the complete definition of this metamodel elements are omit-
ted but it can be found on the aspecs website. The following section introduces a case study
used to illustrate the various steps of the aspecs development process and their associated
notations.

2.3 Case study: simulation of an industrial plant

A case study will be used throughout this paper for exemplifying the activities and arte-
facts composing the proposed design process. The case study deals with the analysis and
modelling of one the most important industrial plant of eastern France. The plant belongs
to a major automotive manufacturer, it is greater than 250 hectares, and, as most industrial
plants, it is in perpetual evolution. The plant produces over 1700 cars per day and it requires
constant improvements and expansions in order to handle the worldwide increasing demand
of vehicles. As the production grows up new buildings need to be built and production units
relocated. This plant, even including an internal railway, can be seen as a small town with a
high traffic density. The plant counts on over 19000 employees working in different shifts
to ensure the plant produces 24 h a day. Last year an average of over 1600 trucks entered
the plant every day carrying supplies. From a geographic point of view, three cities and a
highway enclose the plant. Such a configuration makes difficult to increase the plant’s size for
accommodating new buildings, thus forcing to redesign the infrastructure when new needs
arise.

Production chains are located inside buildings that exchange their products by using trucks.
These trucks have predefined tours inside the plant. Buildings exchanging materials on a reg-
ular basis constitute a so-called Building Cluster. Identifying these clusters is very useful
when planning trucks’ routes and even more important when planning an infrastructure
modification. Infrastructure modifications include (re)positioning the different workshops
required by the material-processing plan inside existing buildings. Each workshop usually
receives materials from outside the plant (raw materials) and/or another workshop. Materials
produced by workshops go to other workshops or outside the plant (complete cars).

123

274 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 6 Screenshots of the simulation

Any change in the location of a workshop could generate perturbations on the traffic flow
and on the smooth functioning of the plant as a whole. Conversely, the proper positioning
of workshops in existing buildings is an important optimisation activity that can result in an
improved production for the overall plant.

Due to the great number of constraints and interrelated dependencies between traffic and
production, a simulation tool could be of great help when evaluating different design choices.
Even the smallest modification in a plant of this size often requires a significant budget to be
invested. A reliable simulator could offer the possibility of detecting side effects before the
project approval.

Our simulation tool aims at providing a set of tools to support the decision maker in pre-
paring infra-structural modifications (such as the construction of new buildings or parking
lots, the relocation of workshops, etc.) or when changing functional elements, like trucks’
schedules and routes.

However, simulation of microscopic models may be inefficient when there are a great
number of entities in the model. Moreover, multiple views of an unstructured model may be
difficult to integrate. In order to deal with both these two problems we adopted the proposed
holonic approach.

The simulator we developed offers a microscopic agent-based simulation of the indus-
trial plant. It provides a set of indicators concerning congestion, jams, exchange of products
between buildings. A connection with a Virtual Reality (VR) platform was realised to offer
the possibility of visualising the simulation in real-time by using 3D technologies (see Fig. 6).

This case study exhibits several properties that make it an ideal experiment for the evalu-
ation of the aspecs design process:

Openness: Trucks and cars enter and exit freely in the scenario. The number of involved
trucks is not a priori known.
Complexity: Workshops are a priori positioned and their positions are fixed for each
scenario. During the execution of each scenario, workshops are dynamically clustered
in the Building Clusters, according to the volume of materials exchanged among them.
Intuitively, the optimal solution consists in positioning tightly related workshops in the
same building or in buildings that are nearby. The complexity of the problem arises from
the fact that all workshops are some way related and therefore a modification in one
single cluster may impact all the others.
Dynamics: The route of each truck is not a priori determined. The expected transit sched-
ule has to be dynamically adapted to face delays, contingencies in production and traffic
jams.

Workshop clusters are dynamically identified and may evolve according to the scenario
events flow. This means that workshops may also enter and exit clusters at runtime.

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 275

In the following section we start detailing the aspecs design process with the help of
this case study. The description begins with a section reporting the activities of the System
Requirements phase and then it continues with two sections describing the other two phases:
Agent Society, and Implementation and Deployment.

3 System requirements analysis phase

System requirements analysis phase aims at providing a full description of the problem based
on the concepts defined in the Problem Domain of the metamodel. A complete description
of this phase process can be found in the aspecs website5 and it is omitted here because of
space concerns.

3.1 Domain Requirements Description (DRD)

Both the passi and aspecs, software processes are driven by requirements. Thus the starting
activity deals with the analysis of system functional and non-functional requirements. Func-
tional requirements describe the functions the software has to exhibit [1] or the behaviour
of the system in terms of interactions perceived by the user. Non-functional requirements
are sometimes known as constraints or quality requirements [1]. The global objective of the
Domain Requirements Description (DRD) activity is gathering needs and expectations of
application stake-holders and providing a complete description of the behaviour of the appli-
cation to be developed. In the proposed approach, these requirements should be described by
using the specific language of the application domain and a user perspective. This is usually
done by adopting use case diagrams for the description of functional requirements; besides,
conventional text annotations are applied to use cases documentation for describing non-
functional requirements. In aspecs, we advocate the use of a combination between use-case
driven and goal-oriented requirements analysis where the description of functional require-
ments is completed by the one of associated goals and goal failures [11,12]. The resulting
document is labelled as the current activity: Domain Requirements Description (or briefly
DRD) document.

Figure 7 details the use cases associated to a portion of the AMP case study. The single
actor represents the manager of the manufacturing plant that will use this system as a decision
support tool. The manager actor has two main requirements for the system: the first con-
sists in identifying groups of buildings with important materials exchange (Identify clusters
use case). The second requirement concentrates on the evaluation of vehicle traffic inside the
plant (Simulate traffic use case). The goal is to identify and look at traffic related components,
like roads, vehicles, traffic lights. This also requires modelling the topological structure of
the plant. Traffic simulation also concerns the identification of parameters that will provide
meaningful information to estimate congestion and possible jams.

3.2 Problem Ontology Description (POD)

The global objective of the Problem Ontology Description is to provide an overview of the
problem domain. Stake-holders naturally express requirements in their own terms and with
implicit knowledge of their own works [52]. Therefore the aim of this activity is deepening
the understanding of the problem by complementing the usual requirements description in

5 http://www.aspecs.org.

123

http://www.aspecs.org

276 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 7 Domain Requirements Description of the AMP decision support tool

terms of use cases with a description of the concepts that compose the problem domain.
It describes concepts used in the specific language of the application domain and users.
Results of this work can sometime imply modifications in uses cases. The design of the
domain ontology occurs very earlier in our process and this has a direct consequence in
the organisation and capacity identification activities. Problem ontology is modelled by
using a class diagram where concepts, predicates and actions are identified by specific ste-
reotypes. The POD consists in the conceptualisation of the requirements described in the
previous activity and in any document that describes the system-to-be like, for instance,
textual requirements. There exists several approaches for engineering ontologies such as lin-
guistic studies, mining techniques or brainstorming. For a survey on ontology engineering
see [25].

Problem Ontology of the AMP decision support tool is depicted in Fig. 8, classes in grey
are related to the solution ontology and will be discussed later in Sect. 4.1. This ontology
includes a Plant concept, which represents the entire plant. This is composed of zones that
can be decomposed in smaller zones thus describing an area, which may be refined to the
granularity of a building or a road segment. Each zone is linked to adjacent zones by connec-
tions. A connection can be refined in either a gate (if one of the two zones is a building or
the road segment is located at the border of the plant) or a crossroad. Vehicles move on road
lanes that compose the road segments and there is a specific type of vehicle, namely Truck
that can carry materials between buildings; other vehicles such as cars and buses do not carry
materials and they only contribute to traffic congestion.

3.3 Organisation Identification (OID)

The goal of the Organisation Identification activity is to bind each requirement to a global
behaviour, embodied by an organisation. Each requirement is then associated to a unique
organisation (see Fig. 2) in charge of fulfilling it. As already said, an organisation is defined
by a set of roles, their interactions and a common context. The associated context is defined
according to a part of the Problem Ontology, described in the previous activity.

Starting from use cases defined in the DRD activity, different approaches could be used
to cluster them and identify organisations. We advocate the use of a combination between
a structural (or ontological) approach mainly based on the analysis of the problem structure
described in the POD and a functional approach based on requirement clustering.

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 277

Fig. 8 Problem and Solution (in grey) Ontologies of the AMP decision support tool

Structural analysis focuses on the identification of the system structure. It is mainly based
on the association between use cases and related ontological concept. In structural organi-
sation identification, use cases that deal with the same ontological concepts are often put
together in the same organisation. This approach assumes the same knowledge is probably
shared or managed by the different members of the organisation. The structure of the ontol-
ogy itself can often constitute a good guideline to identify organisations, their composition
relationships, and later their roles.

Behavioural analysis aims at identifying a global behaviour for the organisation intended
to fulfil the requirements described in the corresponding use case diagram. The set of organi-
sation roles and their interactions have to generate this higher-level behaviour. For this task,
the use of Organisational Design Patterns [47] may be useful to the designer. In behavioural
organisation identification, use cases dealing with related pieces of the system behaviour are
grouped (for instance an use case and another related to it by an include relationship). This
means that members of the same organisation share similar goals.

These two strategies are also used in methodologies such as GAIA [57]. On the one
hand, the analyst can mimic the real world (through its conceptualisation in the ontology)
if its structure is a mandatory or relevant aspect of the system-to-be. On the other hand if
the existing organisations are not efficient nor relevant for the system-to-be the use of a

123

278 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 9 Fragment of the Organisation Identification of the AMP decision-helping tool

behavioural point of view is probably to be preferred. In the two cases, the subsequent
activities determine if the choices made are consistent. Indeed, the identification of roles and
interactions (cf. Sect. 3.4) and their refinement through scenarios descriptions (cf. Sect. 3.5)
and role plans (cf. Sect. 3.6) validate the assignments (fulfil relationships) of organisations
to use cases.

The use case diagram presented in Fig. 9 presents a part of the organisation identification
diagram. For instance, use cases Simulate Traffic, Simulate Vehicle and Move Vehicle are
clustered in the Traffic simulation organisation according to a functional identification of the
resulting Traffic Simulation organisation.

3.4 Interactions and Role Identification (IRI)

The Interactions and Role Identification (IRI) activity aims at decomposing a global behav-
iour embodied by an organisation into smaller interacting behaviours. Each of these finer
grained behaviours will be exhibited by a Role. Interacting roles must be defined in the same
organisation that provides the interaction context. The goal of each Role is to contribute to
the fulfilment of (a part of) the requirements of the organisation it belongs to.

This activity also aims at completing the system perimeter definition started in the domain
requirements description activity. This is done by adopting two different types of Roles: Com-
mon Role (often called just Role) or Boundary Role. This latter has been conceived to work
at the borders of the designed system. Boundary Roles can be, for instance, used to control
external sensors/effectors or to interact with other systems. The result is a class diagram
where classes represent roles (stereotypes are used to differentiate common and boundary
roles), packages represent organisations and relationships describe interactions among roles
or contributions (to the achievement of a goal) from one organisation to another. Perform-
ing this activity is usually an iterative process coordinated with the following Scenarios

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 279

Fig. 10 Fragment of the Interactions and Role Identification for the AMP decision-helping tool

Description. In this latter, elements that have here been depicted from a structural point of
view are exploited in their dynamical behaviour.

Some methodological guidelines may be provided to explicit this iterative process: the
first step consists in looking into scenarios that can be deducted from use case diagrams
to identify interactions. Let us suppose, for instance, that organisation O1 is assigned to
fulfil requirements represented by use cases A and B. Use case B has an “include” relation-
ship with use case C assigned to organisation O2. This encourages the designer to explore
the possibility of a scenario where a role of O2 interacts with another role of O1 in order
to provide to O1 the result of a capacity that belongs to O2. Another guideline for roles
identification consists in looking at the structure of the ontology in order to find elements
that suggest some hierarchical structure that could evoke a holonic configuration with inter-
acting roles (usually such a configuration is also useful for organisations identification as
it has been said before). The process stops when all organisations have been decomposed
into interacting roles and when all corresponding interactions have been described in at
least one scenario. Organisations fulfilling requirements with mutual dependencies in the
use case diagram should be linked during the IRI activity, usually by a “contributes to”
dependency.

We will now focus on the Traffic simulation organisation of the AMP case study that
is located at this finest level of granularity in the hierarchical decomposition of the plant.
This organisation can be decomposed in three roles (see Fig. 10): Road User, Crossroad
and RoadSegment, which are a Common Role. However Crossroad and RoadSegment are
located at the boundary between the plant and the outside region and they can be regarded
as Boundary Roles. A Road User can drive along a RoadSegment and cross a Crossroad if
environmental conditions allow it (for instance no other Road User is crossing a Crossroad
at the same time).

The Zone simulation organisation corresponds to the other levels of granularities in the
hierarchical decomposition of the plant. This organisation can be recursively used to decom-

123

280 Auton Agent Multi-Agent Syst (2010) 20:260–304

pose behaviours until we reach the lowest one that is modelled by the Traffic simulation
organisation. The Zone simulation organisation is composed of two roles: Connection and
Zone. As stated in the ontology, a Zone can be decomposed in smaller Zones (and finally
decomposed in Road Segments and Crossroad at the lowest level). The simulation of a Zone
can then be the result of the simulation of smaller Zones. This contribution relationship is
also depicted in Fig. 10 by using a uml constraint named “contributes to”.

3.5 Scenario Description (SD)

The goal of this activity is to describe the sequence of interactions occurring among roles
involved in each scenario. Scenario description is done just after OID and IRI activities,
and at this stage it is possible to assign an organisation and a set of interacting behaviours
(enacted by involved roles) to each requirement. The challenge now consists in the descrip-
tion of how these different roles are interacting to realise the scenario. In this sense, the
required scenarios can be seen as a conventional design activity dealing with capturing the
behaviour of the system in the most relevant occurrences of use cases (scenarios are also
often referred to as instances of use cases). Designed scenarios should describe real exam-
ples of program execution and they should also include a description of the normal event
flow [52]. Scenarios are drawn in form of UML sequence diagrams and participating roles
are depicted as object-roles. The role name is specified together with the organisation it
belongs to.

In order to perform this activity, a suggested guideline consists in starting from the system
behaviour as it has been described in the Organisation Identification activity (see Sect. 3.3).
There, the system behaviour had been specified in terms of use cases, it had been partitioned
by using packages, and finally assigned to responsible organisations. Besides, it is worth to
note that Scenario Description activity is tightly related to the preceding one (Interactions
and Role Identification) where the roles populating scenarios are depicted from a statical
point of view together with their relationships

For the already proposed Traffic simulation organisation the scenario described in Fig. 11
corresponds to a Road User trying to cross a Crossroad. First it requests permission to the
Crossroad. The Crossroad first checks if the required crossing is compliant with local traffic
rules (prescribed directions, obligatory turns, etc) and then requests traffic information to the
next Road Segment (the destination one). If entering the new Road Segment is possible then
the Crossroad grants the permission to the Road User, which crosses it.

3.6 Role Plan (RP)

The goal of each Role is to contribute to fulfil (a part of) the requirements of the organisation
within which it is defined. The behaviour of a Role is specified within a Role Plan. The goal
of this activity is to conceive, for each role, a plan that could fulfil the part of the organi-
sation requirements that have been delegated to the role under study. In this context a plan
describes how a goal can be achieved; it is the description of how to combine interactions,
external events, and Role Tasks in order to fulfil a (part of a) requirement. A Role Task is the
specification of a parameterised behaviour in form of a coordinated sequence of subordinate
units (a Role Task can be composed of other Role Tasks).

The first task in this activity consists in detailing responsibilities assigned to the currently
designed role. For each role, a set of Role Tasks has to be identified for accomplishing the
assigned requirements. Roles interactions that have been already defined in previous activities

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 281

Fig. 11 A scenario description for the AMP Traffic Simulation Organisation

may prove useful in the definition of the plan and at the same time they are constraints to
be satisfied by the plan (the role has to engage in the already identified interactions in order
to exhibit a behaviour that is coherent with the scenarios it is involved in). The final step
consists in determining transitions between the various activities and the set of associated
conditions. In a second iteration each task will be examined to be eventually decomposed
and in order to determine if it requires something external to the role. If this is the case then
a new capacity will be created in the next activity and the role will refer to it.

The resulting work product is an UML activity diagram reporting one swimlane for each
role. Activities of each role are positioned in its swimlane and interactions with other roles
are depicted in form of signal events or object flows corresponding to exchanged messages.

Figure 12 reports an example of a Role Plan diagram. It depicts the plan of the Traffic
simulation organisation starting with an external signal, which indicates the beginning of
the simulation. After that, the Road User establishes a route and the corresponding motion
variables according to the chosen route; it follows on until a Crossroad is reached. When
the Road User reaches a Crossroad, it asks the Crossroad for a crossing permission. The
Crossroad grants the permission if the Crossroad is available and if the Road Segment des-
tination is not jammed. The Crossroad sends a suggestion to the Road User, which takes
the final decision. When the Road User exits the plant it is destroyed, if it does not and
if the Crossroad is free then the Road User crosses it and informs the new road of its
entrance. When the Crossroad is busy, the Road User waits. The plan of the Road Segment
consists in waiting for information requests (for instance about traffic) and incoming Road
Users.

3.7 Capacity Identification (CI)

The main objective of the Capacity Identification activity (CI) is the definition of generic
role behaviour by identifying which know-how a role requires from the individual that will
play it. As already said, a capacity is a description of what an organisation (and therefore
one of its composing roles) is able to do without any kind of specification on how to do
it. It means that the results described by a capacity may be reached by adopting different
strategies. The realisation of the capacity is a concern of the Agency Domain and it will be
discussed later.

123

282 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 12 Roles Plan of the AMP Traffic Simulation Organisation

Indeed there are various ways of carrying out a capacity and they depend on data, which
are strictly related to the entity personality (beliefs, acquaintances, etc). This is often a design
choice. The final result of this activity (see Fig. 13) is performing a revision of the already
designed IRI diagram by adding capacities (represented by classes) and relating them to the
roles that require them.

In Fig. 13, roles of the Traffic Simulation and Zone Simulation organisations are linked to
three capacities. An entity playing the Road User role must own the Choose Route capacity.
This capacity allows the computation of a route between two points according to environ-
mental constraints. Entities playing the Connection and Zone roles must have a zooming
capacity (for enabling the decomposition in smaller zones).

At the end of the Capacity Identification activity, a set of capacity have been identified.
If the complexity of these capacities is manageable by atomic easy-to-implement entities,

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 283

Fig. 13 Capacity Identification of the AMP Traffic and Zone Simulation Organisations

the iterative analysis process stops. Otherwise, the complex capacities are considered as new
requirements, and a new iteration starts. The System Requirements Analysis phase needs to
be reiterated to consider these new requirements and thus identify organisations in charge of
realising them, and so on. More details on this aspect may be found in [15].

4 Agent society design phase

This phase aims at designing a society of agents, whose global behaviour is able to provide
an effective solution to the problem described in the previous phase and to satisfy associated
requirements.

At this point, the problem has been modelled in terms of organisations, roles, capacities
and interactions. The result of this design phase is a model of the agent society involved in
the solution in terms of social interactions and dependencies among entities (Holons and/or
Agents).

After the first activity (Solution Ontology Description), the design flow is split in two
alternate paths: one concerning the social and organisational aspects of the system and the
other dealing with the design of agents considered as individuals with their own individual
goals. The resulting agents will be positioned at the lowest level of the hierarchical social
structure while holons will cluster roles played by them thus building the holarchy.

In other words, agents are designed as individuals owning the capacity implementations
necessary to play roles composing social structures (holons). In turn, once obtained (by
agents) the realisation of the capacities necessary to exhibit their behaviours, holons can be
considered at a higher level of abstraction as capacity implementation owners by themselves,
and therefore they can play roles in higher level holons thus enabling the composition of the
holarchy.

In the following sub-sections each activity will be detailed as it has been done for the
System Requirements Analysis phase activities.

123

284 Auton Agent Multi-Agent Syst (2010) 20:260–304

4.1 Solution Ontology Description (SOD)

The objective of this activity consists in refining the problem ontology described during
POD activity by adding new concepts related to the agent-based solution and by refining the
existing ones. Concepts, predicates and actions of this ontology are now also intended to be
used for describing information exchanged in communications among roles. This implies the
definition of all the predicates that are used to exchange knowledge in communications as
well as the actions that can be done by Holons/Agents and affect the status of the world they
live in (as represented in ontology by concepts). The introduction of actions in ontology is
not new and is also compliant with a FIPA6 specification (RDF [22]).

The presence of actions in the ontology allows to model the complete knowledge space
of autonomous entities, in terms of the concepts they can understand, the predicates they can
assert about the status of those concepts, and the actions they can perform/conceive in order
to affect the status of concepts.

This activity follows an iterative and incremental design approach. The need for new con-
cepts, predicates and actions can arise at any moment in the design activities and can justify
iterations to improve ontology with the new elements.

As regards the proposed case study, in order to fully support the physical model of vehi-
cles moving in the plant, the ontology (see Fig. 8) as been enriched with concepts concerning
features of a Vehicle such as Height, Width, Speed or LoadCapacity for a Truck. Each Zone
is now defined by a set of coordinates.

At the end of the Solution Ontology Description activity, the aspecs development pro-
cess is split up into two development sub-branches, the first and foremost is dedicated to the
organisational design of the system, the second is dedicated to the identification and design
of agents composing the system. In other words, the main branch deals with the design of
the organisational structure of the system and collective goals that have to be satisfied by
organisations, while the second branch deals with agent’s personal goals and motivations,
and it aims at defining the agent architecture. The two branches are then merged to describe
the complete holarchy structure of the system and the individual agent decision plan. In the
following subsections, the activities related to agents design and then the organisational ones
will be described. This corresponds to building the holarchy in a bottom-up way. This is not
a prescription of the proposed approach but only a presentation choice. The designer is free
of choosing his/her preferred branch and even (most likely) interleaving the activities of the
two paths. The Agents Identification activity is the first activity of the agent design and it
will be discussed in the next section.

4.2 Agent Identification (AI)

This Agent Identification (AI) activity consists in identifying agents that will compose the
lowest level of the system hierarchy and their responsibilities. These responsibilities are
modelled using the notion of individual goals and will be the basis to determine agent archi-
tectures in the next activity. The Interactions and Role Identification, Solution Ontology and
Domain Requirements Description Documents are the main inputs of this activity. Agent’s
goals identification is mainly based on gathering organisation responsibilities located at the
lowest level of the system organisational hierarchy. These responsibilities are expressed in
term of requirements described by using a combination between a use-case driven and a
goal-oriented approach [11,12]. Agents are conceived to play these lowest-level roles; their

6 Foundation for Intelligent Physical Agents: http://fipa.org.

123

http://fipa.org

Auton Agent Multi-Agent Syst (2010) 20:260–304 285

Fig. 14 Agent Identification for the AMP case study

Fig. 15 Description of the Truck Agent architecture

personal goals should thus at least correspond to the union of the goals of these roles. To
play these roles, agents have also to provide an implementation for the capacities required
by these roles. This aspect will be studied in the next activity. Besides, Agent Identification
activity is also guided by the identification of ontology concepts that represent system indi-
viduals (concepts linked to ontology actions, for instance Truck in our case study). These
latter are effectively considered as useful guidelines to identify agent responsibilities since
an individual acts according to personal motivations and goals.

We propose to use tropos goal and actor diagram to describe the results of this activity.
However, system and agent overview diagrams as proposed in prometheus [45] may also
be used as an alternative solution.

Figure 14 describes the Vehicle and Truck agents of the AMP Case study and their respec-
tive responsibilities using a tropos Goal diagram.

4.3 Agent Architecture Description (AAD)

The Agent Architecture Description (AAD) activity aims at providing precise indications on
the architecture that should be adopted by agents. Indeed, the agent architecture is at least
defined by the set of roles that the agent should play and the minimal set of services that
implement the capacities required by these roles. The association between Agents and Agent
Roles allows the identification of the set of capacities that are required by Agent Role in
order to be played by Agents. In this activity, a uml class diagram is used to describe agents
and their capacities realisations in terms of attributes and methods.

The Truck agent architecture sketched in Fig. 15 consists mainly in an implementation of
a Path Finder Algorithm, which realises the Choose Route capacity.

4.4 Communication Ontological Description (COD)

This activity aims at describing communications among roles. A communication is an inter-
action between two or more roles where the content (language, ontology, and encoding) and
the sequence of communication acts (protocol) are explicitly detailed. A communication
mainly consists of speech acts and protocols as also specified by FIPA. The model of com-
munication adopted is based on the assumption that two roles wishing to interact, share a

123

286 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 16 Communication Ontological Description of the AMP Traffic Simulation Organisation

common ontology. This common knowledge is represented in the communication by a set
of Ontology elements. A communication is an interaction composed of several messages
ordered by a Protocol. Each message underpins a specific communicative act (see [48] and
FIPA speech acts [23,24]) and its content refers to one or more ontology elements. The
message is encoded in a content language.

At this stage we could regard the previously studied interactions as messages and each set
of interactions between two roles has to be clustered in one or more communications. This
activity also describes data (it would be better to say knowledge) structures required in each
role to store exchanged information by adding the necessary ontological structure to roles.
These structures are of course based on the elements of the solution ontology.

Figure 16 describes some communications of the AMP Traffic Simulation Organisation.
For example, each Road User role-player may initiate an Entering communication ruled by
the FIPA-inform protocol, using the Solution Ontology previously described and encoded in
RDF.

4.5 Role Behaviour Description (RBD)

This activity aims at defining the complete life-cycle of a role; Roles identified during the
IRI activity are here specialised in Agent Roles, which interact with each other by means of
communications. The behaviour of Agent Roles is described by a set of Agent Tasks that are
the refinement of the Problem Domain Role Tasks and contribute to provide (a portion of)
an Agent Role’s service. At this level of abstraction, this kind of task is no more considered
atomic but it can be decomposed in finer grained Agent Actions.

An Agent Action is now the atomic unit of a behaviour specification. An action takes a set
of inputs and converts them into a set of outputs, though either or both sets may be empty.
An example of the most basic Agent Action consists in invoking a capacity or requesting a
service (as explained in following subsections).

The Role Behaviour Description is a refinement of the results produced by the Role Plan
activity performed in the System Requirement phase. The behaviour of each role is now des-
cribed using a statechart or an activity diagram but the use of statecharts is preferred because
of their expressiveness, their executability and their capabilities to generate code. If a role

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 287

Fig. 17 Role Behaviour Description of the Road User role in the Traffic Zone Organisation

requires capacities or provides services, this activity has to describe tasks and actions in
which they are really used or provided. The designer describes the dynamical behaviour of the
role starting from the Role Plan drawn in the previous phase and the capacities used by the role.

Figure 17 describes the behaviour of the Road User Role. By default it is idle just the
time for computing a route (the transition without event). Once the route is computed it starts
travelling on a road lane. This state remains active until a crossroad is reached. When such
an event occurs the role sends a requestCrossingPermission message and enters the waiting
state. When the crossingPermission reply is received the role either continue in the running
on a road lane state if it is still in the plant or exits the plant. If no answer is provided before
a timeout, the Road User computes a new route.

4.6 Protocol description (PD)

The aim of this activity is to define purpose-specific interaction protocols whose need
may arise when the description of communications done during the COD (Communication
Ontology Description) and SD (Scenario Description) activities does not match any of the
existing FIPA protocols.

The designer starts from the scenarios and the ontological description of communications
in order to find if an existing protocol can be used. If not, then he/she can proceed to the
definition of a new protocol that is compliant with the interactions described in scenarios and
communication semantics.

It is advisable to refer to the FIPA Interaction protocols library7 in order to see if a satis-
fying protocol already exists and if not, probably an existing one can be the basis for changes
that can successfully solve the specific problem.

For our case study there is no need of designing new protocols as we reused existing ones.

4.7 Organisation Dependencies Description (ODD)

The goal of the Organisation Dependencies Description activity is to define relationships
between: (i) capacities required by roles and organisations, and (ii) services that realise
them. It also dedicated to the identification of resources.

Although capacities and services play a central role in this activity, the process to be
performed does not start from them. Organisation Dependencies Description activity starts
from the identification and description of resources that are manipulated by roles.

7 FIPA Interaction Protocols specifications: http://www.fipa.org/repository/ips.php3.

123

http://www.fipa.org/repository/ips.php3

288 Auton Agent Multi-Agent Syst (2010) 20:260–304

Fig. 18 Organisation Dependencies Description of the AMP Traffic and Zone Simulation Organisations

Resources in aspecs are regarded as abstractions of environmental entities accessed by
boundary roles. In order to access resources, roles need specific capacities that are now pur-
posefully introduced and then realised by services if necessary. In this way dependencies of
organisations on the real world are made explicit.

Finally, this activity should also outcome with the description of interfaces used by the
system to manipulate resources. This matching between service and capacity allows the con-
struction of a repository that may be used to inform agents on how to dynamically obtain a
given capacity. Moreover it also proves that the hierarchical system decomposition is correct
since the matching should validate the contribution that organisations acting at a given level
give to upper-level organisations.

The resulting work product, as exemplified in Fig. 18, is a uml class diagram, report-
ing roles (clustered in organisations), communications, services, capacities and resources. It
can be seen as a refinement of the COD (Communication Ontological Description) diagram
including services and resources. Figure 18 describes dependencies of the Traffic Simulation
organisation. One new resource has been identified (it represents a 3D virtual engine), and
the RenderVehicle capacity has been created to manage it. It is interesting to note that this
capacity does not need a service realisation because the corresponding functionality is inter-
nal to the Road User role that does not need to publish it as a service. It is the same for
the Choose Route capacity. The Connection Zoom and Zone Zoom capacities have service
realisation since the zooming is done by mean of sub-holons contribution.

4.8 Role Constraints Identification (RCI)

This activity aims at identifying constraints between roles. This for instance includes roles
that have to be played simultaneously, priorities in their executions, mutual exclusions, depen-
dencies, and so on. Concurrency constraints are also important because they will guide the

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 289

Fig. 19 Description of the Truck Agent Plan

definition of role scheduling policies. Detailed constraints between roles must prevent their
inopportune concurrent execution and force the correct execution sequence. Roles shall be
played simultaneously if and only if they allow an exchange of information between two dif-
ferent organisations. A mean to realise this exchange can be the agent internal context when
both roles belong to the same agent. This constitutes an alternative to the use of services and
a simplification of information transfer.

Constraints between roles are identified thanks to roles dependencies and associated
knowledge described in the previous activity. Role behaviour description also defines which
information is eventually required by other organisations and it thus allows the identification
of roles couples that have to be played simultaneously.

In the presented case study, if an agent plays the role Carrier, it must play at the same
time the role Road User. This type of constraints is modelled by using a stereotyped uml
dependency from the Carrier and Road User classes. The direction of the dependency means
that the Carrier role required that its player already plays the Road User role.

4.9 Agent Plan Description (APD)

This activity aims at terminating the design of agent internal architectures. According to the
results of the Agent Architecture Description and Role Constraints Identification activities,
it is now possible to determine the personal plan of each agent according to its individual
motivations and pursued goals. In this activity, each agent of the system is associated to the
set of roles it has to play according to the set of capacities it owns. An agent has to provide
an implementation for each capacity required by the played roles. The plan represents the
strategy used by the agent to choose the roles it plays. In this activity, a state-chart diagram
is used to describe the plan of an agent; an activity diagram may also be used (see Fig. 19).

The Truck agent plays two roles, namely Road User and Carrier. By default it plays
the Road User role and if it reaches a Gate it decides to play the Carrier role. When the
load/unload operations are finished it returns playing the Road User role.

4.10 Holarchy Design (HD)

At this step in the development process, the set of organisations composing the system, their
roles and the associated communications have been identified and specified. The architec-
tures of the various agents have also been specified. The Holarchy Design activity is the last
activity of the Agent Society design phase and aims at providing a global synthesis where
previous activities work products are combined and summarised in a single work-product
describing the overall structure of the system and the rules that will govern its dynamics.

In order to properly define the discussed aspects of each holon, the Holarchy Design
activity is decomposed in four main tasks that are detailed in what follows.

123

290 Auton Agent Multi-Agent Syst (2010) 20:260–304

Holonification task. This task aims at mapping the previously identified hierarchy of
organisations to a holarchy. This mapping is based on the association of holons composing
the holarchy with the set of roles defined in the organisation hierarchy they have to play. To
build holarchies, organisations that composed the system are instantiated in form of groups.
A set of previously identified agents composes the lowest level of the holarchies. A set of
holons is then created at each upper level, each holon may play one or more roles in one
or several groups in the level of interest. Composition relationships among super- and sub-
holons are then specified according to the contributions required by the organisations (as
described in the OID and ODD work products).

In this activity, two points of view on the system are used to conceive the final system
holarchy. Each of these viewpoints corresponds to a dimension of the holon concept (see
Fig. 5):

Horizontal: This step consists in instantiating organisations of the same level in terms of
groups. Then, holons will be created for clustering these groups and they will
be associated to the roles they should play according to the results of the ODD
and RCI activities.

Vertical: This step aims at specifying the composition relationship between holons. It spec-
ifies how a group of holons of level n will contribute to the behaviour of a role
played by a holon of level n + 1. Groups of level n are instances of organisations
that provide services able to implement capacities required by roles located at level
n + 1.

Holon Government Model Definition task. The second task focuses on newly composed
holons and it aims at identifying a government type for each of them. The objective consists
in describing the various rules used to take decisions inside each super-holon. Defining the
holon government type essentially means defining the holon decision-making process. For
instance when an external holon is requesting its admission as a member, the decision to
accept or refuse it should be taken according to a specific decision-making process that has
to be defined (for instance, a voting mechanism may be used).

Two aspects of the decision-making process should be analysed: (i) who is in charge of
taking the decisions and how this happens (head, vote, etc.); (ii) who is to be contacted by
the external holon that wants to enter the super-holon or that is requesting a service and how
the requesting process could be started.

The decision process for the admission of a new member is an example of decision process
that fits most of the cases and for this reason we will mainly refer to that without loosing in
generality. The decision can be done according to several different internal policies represent-
ing different levels of involvement of the holon member community: federation is positioned
at one side of the spectrum, dictatorship on the opposite one. In the federation configuration,
all members are equal when a decision has to be taken. Opposite to that, in dictatorship, heads
are omnipotent; a decision taken by one of them does not have to be validated by any other
member. In this government form, members loose most of their autonomy having to request
the head permission for providing a service or requesting a collective action. Another pos-
sibility consists in establishing a voting mechanism. Specific and interesting configurations
can arise from the number of voters and the percentage of heads and peers involved in the
decision-making process, because of their relevance it is worth to analyse them in details:

Monarchy: the command is centralised and a Head is in charge. Monarchy, here, doesn’t
refer to the process of Head’s nomination/election. The nomination process is a
different issue from the decision-making process. Monarchy here describes the
situation where only one head controls the entire decision-making process.

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 291

Fig. 20 A fragment of the Holarchy Design of the AMP decision-helping tools

Oligarchy: A little group of heads share the command without referring to the other (peer)
members.

Polyarchy:8 A little group of heads share the command but they have to refer to the Peers
for some decisions.

Apanarchy:9 The command is completely shared between all members of the super-holon.
Everyone takes part to the decision-making process.

Holarchy Definition task. The previously described elements are merged in order to obtain
the complete set of holons (composed or not) involved in the solution. In this way, the complete
holarchy of the system is described. Results of this task are summarised in an organisational
cheese-board (see Fig. 20) that is an extension of the cheese-board diagrams introduced in
[21]. This diagram is then associated to a set of documents describing the government of
each holon and the rules governing their dynamics as above discussed.

Holon self-Organisation Mechanisms Definition task. The description obtained with the
previous tasks is just the initial structure of the system, the last objective is now to specify ho-
lons’ self-organisation mechanisms (creation, new member integration, scheduling policies
for roles) in order to support a dynamic evolution of the system holarchy.

Because of space concerns, only the most common and important rules governing holon
dynamics are discussed here, mainly those dealing with members’ recruitment and holon
creation.

Once a super-holon has been created, new members may request to join it or the super-holon
itself may recruit new members to achieve its own goals. The new member admission process
is called Merging. In order to support the integration of new members, a “standard” inter-
face should be provided to external holons for submitting their admission request. A specific
organisation with two roles, StandAlone played by the candidate, and Representative played
by at least one of the representatives of holons members, has been designed to manage this
recruitment process.

8 We borrow the term coined by Robert A. Dahl [17] to describe a specific type of democratic government.
9 The name is a composition of the Greek Apan meaning all or every and archein, “to rule”.

123

292 Auton Agent Multi-Agent Syst (2010) 20:260–304

As regards the holon creation mechanism, it is important to study the motivations for the
birth of a new holon; these can in fact either depend: (i) on the need to satisfy in a collective
way a requirement that cannot be accomplished by a single entity alone, or (ii) on the need
to improve the internal structure of an existing holon that is becoming too big and whose
tasks are too complex to be managed. It is therefore possible to distinguish two different
mechanisms:

A top-down mechanism (sub-division): a super-holon, whose tasks are too complex,
decides to create a set of internal organisations that are able to execute these tasks thus
distributing the computational cost and breaking down the organisation complexity. This
case could be reduced to a specific one of the initial creation process, because newly
created holons are configured to satisfy integration constraints with the super-holon.
A bottom-up mechanism (fusion–merging process): a set of holons decides to merge and
to create a super-holon for satisfying a common goal. In this case, all rules that will
govern the life of the new super-holon have to be defined.

A fragment of the final structure of the holonic solution for the AMP case study is
presented in Fig. 20 using a holonic cheese-board diagram. This diagram is associated to
a map describing two levels of the associated topological decomposition of two plant zones
that are modelled in the application by holons 1 and 2. At the second level of the holarchy,
three super-holons (1, 2 and 3) are playing roles in two groups g0 and g1. The denomination
g0: Zone Simulation indicates that group g0 is an instance of the Zone Simulation organisa-
tion. Holons 1 and 2 represent two plant zones that are linked using a connection embodied
by the holon 3 who maintains statistic information about material flows between the two
adjacent zones. Each of these super-holons contains at least one instance of the Traffic Simu-
lation organisation (g3, g5 and g6) in charge of the simulation of trucks and vehicles traffic
inside the zone and it also contains a holonic group defining the governmental structure. Each
Zone holon disposes of a simple type of government inspired by the oligarchy model where
command is centralised in the hands of a group of heads. The rule is that the holon playing
the Road Segment role is automatically promoted Head and all heads elect one Representa-
tive among them. The agent 7 is shared by two super-holons (1, 2) and thus considered as a
Multi-Part Peer. This holon constitutes the way to transfer vehicles between the two zones
represented by holons 1 and 2.

5 Implementation and deployment phase

This section gives an overview of the Implementation and Deployment phase. As already
said, further details can be found in [26]. This phase aims at implementing and deploy-
ing the agent-oriented solution designed in the previous phase by adapting it to the chosen
implementation platform.

A platform called Janus10 was built in our lab for this purpose. It is specifically designed
to deal with holonic and organisational aspects. The goal of Janus is to provide a full set of
facilities for launching, displaying, developing and monitoring holons, roles and organisa-
tions.

The two main contributions of Janus are: (i) its native management of holons, and (ii) its
implementation of the notion of Role as a concrete implementation-level entity. In contrast
with other platforms such as MadKit [32], JADE, and FIPA-OS, the concept of Role is con-
sidered as a first class entity in Janus. It thus enables a direct implementation of organisational

10 http://www.janus-project.org/.

123

http://www.janus-project.org/

Auton Agent Multi-Agent Syst (2010) 20:260–304 293

Fig. 21 A fragment of the Holon Architecture designed for the AMP case study

models without making any assumptions on the architecture of the holons that will play the
role(s) of an organisation.

Based on Janus, the implementation and deployment phase activities allow the description
of the solution architecture and the production of associated source code and test. This
phase also aims at detailing how to deploy an application over various Janus kernels.
Janus adopts a peer-to-peer technology to allow kernel federation and agent migration. Of
course, the process described in this phase can also be used with any other platform able
to provide a translation of the concepts presented in the aspecs metamodel of the Solution
domain.

5.1 Holon architecture definition

This activity aims at defining the architecture of each holon involved in the implementation
of the previously designed solution. Each organisation together with its set of roles and asso-
ciated tasks has to be described. Each holon is associated with the set of roles it should play,
the set of capacities and services it owns. Two different approaches may be used to design a
holon. A static approach consists in designing a specific architecture for each holon during
the Holarchy Design activity. This approach is the simplest and easiest to maintain, but it
may generate a relevant number of different architectures in complex applications. Another
approach consists in designing a dynamic architecture where holons will dynamically acquire
roles and the corresponding set of required capacities. In this activity the designer also defines
composed holons government rules.

Figure 21 depicts a part of the Holons architecture defined for the implementation of our
AMP example. Environmental parts were implemented as LightHolons (non-threaded). The
Car and Truck agents are implemented as HeavyHolons (threaded). The Traffic Simulation
and Workshop Clustering organisations are partially described in Fig. 21. Only the role Car
User is described in terms of its RoleTasks. Classes in grey correspond to classes of the
solution domain of the aspecs metamodel (see Fig. 4) that are refined to introduce problem
dependent artefacts.

123

294 Auton Agent Multi-Agent Syst (2010) 20:260–304

5.2 Code reuse

A set of organisational patterns may have been used during the two previous phases espe-
cially for the OID (Organisation Identification) and IRI (Interactions and Roles Identification)
activities and for the Holon Government identification task. This activity aims at integrating
the code of these patterns inside the currently designed application. It also intends to provide
a framework for reusing code of previous applications that can be reused in the current one.
Integrating pattern source code may require some adaptation work; for instance, it is often
necessary to adapt the interface with the remaining part of the application.

5.3 Code production of organisations and roles

This activity aims at producing the code for organisations and roles. They are the most ele-
mentary building blocks of the Janus platform; actually each role and organisation becomes
a class in the code and they are grouped together in specific packages (one for each organi-
sation). Starting from the structural and dynamical representation of roles and organisations
the programmer can code their implementation using the Janus primitives. It is part of our
future works to provide tools for the automatic generation of these portions of code from
design diagrams.

5.4 Testing activities

The approach used for tests in aspecs consists in successively testing each context from the
role (the smaller one) to the entire system. Since we use conventional software engineering
approaches, these activities will not be extensively discussed here but only a brief description
will be provided.

The first activity (organisations and roles unit test) aims at testing behaviours that will be
used to compose the system; this means individual behaviours represented by roles and global
behaviours corresponding to organisations. Holon Unit test is the second level of test; it aims
at validating the global holon’s behaviour. A particular attention is paid to holon dynamics
especially to testing rules that govern holon creation, management (task attribution) and the
process of members’ integration. Each holon is individually tested. The third testing activity,
integration test, aims at verifying if the system effectively fulfils the requirements identified in
the Domain Requirement Description activity (a great relevance is now given to verification
of non-functional requirements that can hardly be tested in the previous test activities).

The aspecs process also enables the use of formal methods, such as model checking and
theorem proving [27], but these aspects are not discussed here due to space concern.

5.5 Code production of holons

This activity focuses on code production for holons. In the Janus platform, each holon is
represented by a class. Janus offers two main kinds of holon: a threaded and a non-threaded
one. The programmer has to choose the most appropriate one for the specific problem.

Starting from the results of the Holarchy Design activity, the programmer chooses the
most suitable version of Holon and can code the holon implementation by using the asso-
ciated Janus primitives. When a non-threaded implementation is chosen, holon scheduling
aspects have to be coded too. The three methods that govern the life-cycle of each holon have
also to be defined (activate(), live(), end()); they are associated to the three main states of the

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 295

Fig. 22 A fragment of the Deployment Diagram of the AMP case study

holon’s life: activation, execution, and termination. As inspired by the Madkit synchronous
engine,11 Janus provides a full set of tools to manage non-threaded holons execution.

5.6 Deployment configuration

This activity aims at detailing how the previously developed application will be concretely
deployed. This includes studying distribution aspects, holons physical location(s), their rela-
tionships with external devices (sensors, actuators used/accessed by agents) and resources.
This activity also details how to perform the integration of parts of the application that have
been designed and developed with traditional approaches (i.e. object-oriented ones) with
parts designed by using an agent-oriented approach.

The first task of this activity consists in establishing a partition between the various holons
used to develop the application. This partition is mainly performed according to localisation
of resources and the organisation in which they are used. Then at least one Janus kernel is
deployed on each available elaborating unit. At this stage, the set of corresponding holons and
their associated organisations are deployed on the various kernels according to the previously
defined partition. If a dynamic discovery process is used to integrate new Janus kernels at
runtime then, the way to deploy organisations and their associated roles, on newly discovered
kernels, has to be described too.

Figure 22 illustrates the deployment diagram for the AMP study case. Three physical
nodes are considered; each of them is running a Janus kernel and is connected to the other
nodes via a network connection. The first kernel hosts the 3D engine and the holons playing
the Zone role that correspond to the plant. All the other holons are a-priori instantiated on
one of the two remaining kernels. Of course the location of the holon on the Janus kernel
federation could evolve at runtime.

11 Refer to http://www.madkit.net/site/madkit/doc/devguide/synchronous.html.

123

http://www.madkit.net/site/madkit/doc/devguide/synchronous.html

296 Auton Agent Multi-Agent Syst (2010) 20:260–304

Table 3 Comparisons criteria of the evaluation, inspired from [54]

Criteria Description

Process-related

Development life-cycle What development lifecycle best describes the methodology
(e.g., waterfall or iterative)?

Coverage of the life-cycle What phases of the lifecycle are covered by the methodology
(e.g., analysis, design, and implementation)? Development
perspective: What development perspective is supported
(i.e., top-down, bottom-up or hybrid)?

Application domain Is the methodology applicable to any application
domain (i.e., domain independent) or to a specific
domain (i.e., domain dependent)?

Model-related

OCMAS or ACMAS Which modelling perspective is the methodology adopting ?
Organisation centered (OCMAS) or Agent-centered
(ACMAS)? Is it holonic?

System structure Does the methodology provide means to catch different
levels of abstraction to in system conceptualisation?

System–environment interface Does the methodology provide means to model system
delimitation and associated interactions with the outside?

Knowledge Model Does the methodology provide holistic model of the structure
of the domain knowledge and the interaction and
dependencies of knowledge components in the system?

Formal support Does the methodology have formal foundations?

Supportive-feature

Standard Integration Does the methodology respect the main standards that
governs AOSE ? Process description: SPEM, UP;
Modelling language: UML; Platform: FIPA, MAF;

Software support Is the methodology supported by tools and libraries? IDE,
platform?

Ontology Does the methodology provide support for the use and
specification of ontology in a mas

Open systems Does the methodology provide support for open systems
(i.e., dynamic addition/removal of agents,
organisations)?

Dynamic structure Does the methodology provide support for dynamic structure
(i.e., self-organisation, dynamic reconfiguration of the
system)?

6 Comparisons with existing agent-oriented methodologies

This section presents an evaluation and comparison of nine agent-oriented software
engineering methodologies. The objective is to emphasise the major similarities and dif-
ferences between aspecs and some of the most known existing AOSE methodologies. This
study is mainly based on a feature analysis approach and it is inspired by the work of Tran
and Low [54]. The structure of our study is based on 13 criteria, grouped into three catego-
ries. Some of these criteria come from the work of Tran and Low [54], while some others
have been purposefully introduced to emphasise the evaluation of complex systems related
features. These criteria are described in Table 3.

Results of this comparative analysis are summarised in Table 4. Target systems of the
aspecs design process are mainly complex open systems; the evaluation is thus done under
this perspective. Selected criteria correspond to some of the major points to fulfil in order

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 297

to model such a type of systems with a specific emphasis on the organisational and holonic
perspectives. This evaluation mainly focuses on organisation-centred AOSE design processes.
A specific attention is paid to the Anemona design process that is currently the only other
methodology explicitly dealing with holonic multi-agent systems.

The remainder of this section describes the main results of the comparative analysis
by clustering them on the basis of criteria that distinguish aspecs from the other existing
approaches.

Development life-cycle. Just like aspecs, four of the studied processes adopt a formally
described development lifecycle (e.g. passi, ingenias, anemona, adelfe) and four of them
provide an informal description (e.g. gaia, roadmap, tropos, prometheus). However,
most of these methodologies adopt an approach inspired by object-oriented engineering [8]
and thus follow a highly iterative development process. tropos is the exception because it
is founded on the i* modelling framework that focuses on requirements engineering and it
is centred on the intentional characteristics of the agent [10].

Concerning the coverage of the life-cycle, gaia, roadmap and tropos mainly cover anal-
ysis and design phases, while aspecs covers the entire development process like ingenias,
adelfe [4], prometheus and passi.

Application Domain. Most of the existing methodologies are domain-independent with the
exception of adelfe and anemona. adelfe focuses on the development of adaptive multi-
agent systems. This type of systems is composed of agents that have a strong relationship
with their environment and cooperate with other agents to achieve a specified function.

anemona was the first process to be proposed for designing holonic systems. How-
ever, it is domain-dependent and specialised in the field of holonic manufacturing systems.
This process is based on the various holon architectures proposed in prosa [6]. aspecs is
domain-independent and is conceived to be as independent as possible from specific holon
architectures (although last activities of the Implementation phase exhibit a necessary link
with the adopted implementation platform: Janus).

prosa (the implementation architecture used by Anemona) provides four reference holon
architectures to be used for the design of holonic manufacturing systems: product, resource,
order and staff holon. Besides, prosa aims at structuring the design of specific system archi-
tecture by defining a unified terminology, a generic system structure, the kinds of system
components, their responsibilities, design details and models to be drawn. Holon architec-
tures defined in prosa may be used within the aspecs design process when they fit designer
choices/needs.

Organisational-Centred vs. Agent-Centred MAS. In analysis and design of mas, AOSE
methodologies evolved from an initial vision where the system was mainly centred on the
agent and its individual aspects (Agent-Centred MultiAgent System), to a vision where the
system is now considered as an organisation in which agents form groups and hierarchies,
and follow rules and specific behaviours [2] (Organisation-Centred MultiAgent System). The
evolution of gaia (from the first release [56] to the new one [57]) and tropos (from [5,29]
to [40]) design processes are probably the most striking examples.

Within organisation-centred approaches, two major trends can be distinguished according
to the vision adopted on the concept of organisation [2,16]: (i) The first is based on the
concepts of Role, Group and their relationship, and does not explicitly address the concept
of social norm. This approach is adopted by metamodels such as aalaadin [21] or moise
[33], and processes like ingenias, anemona or tropos. (ii) The second focuses more on
the concept of norm and explicitly defines control policies and rules to be established and
followed. It is associated with methodologies such as gaia, soda [44], omni [18], and more
generally with the notion of electronic institutions [19].

123

298 Auton Agent Multi-Agent Syst (2010) 20:260–304

Ta
bl

e
4

C
om

pa
ri

so
ns

be
tw

ee
n

a
sp

ec
s

an
d

ni
ne

w
el

l-
kn

ow
n

A
O

SE
de

si
gn

pr
oc

es
se

s

C
ri

te
ri

a
PA

SS
I

IN
G

E
N

IA
S

A
N

E
M

O
N

A
G

A
IA

R
O

A
D

M
A

P
T

R
O

PO
S

PR
O

M
E

T
H

E
U

S
A

D
E

L
FE

A
SP

E
C

S

P
ro

ce
ss

-r
el

at
ed

D
ev

el
op

m
en

t
lif

ec
yc

le
It

er
at

iv
e

ac
ro

ss
an

d
w

ith
in

al
l

ph
as

es

U
ni

fie
d

so
ft

w
ar

e
de

ve
lo

pm
en

t
pr

oc
es

s
(U

P)

U
ni

fie
d

so
ft

w
ar

e
de

ve
lo

pm
en

t
pr

oc
es

s
(U

P)

It
er

at
iv

e
w

ith
in

ea
ch

ph
as

e
bu

t
se

qu
en

tia
l

be
tw

ee
n

ph
as

es

It
er

at
iv

e
w

ith
in

ea
ch

ph
as

e
bu

t
se

qu
en

tia
l

be
tw

ee
n

ph
as

es

It
er

at
iv

e
an

d
in

cr
em

en
ta

l
It

er
at

iv
e

ac
ro

ss
al

l
ph

as
es

R
at

io
na

l
U

ni
fie

d
Pr

oc
es

s
(U

P)

It
er

at
iv

e
ac

ro
ss

an
d

w
ith

in
al

l
ph

as
es

C
ov

er
ag

e
of

lif
ec

yc
le

A
na

ly
si

s,
D

es
ig

n,
Im

pl
em

en
ta

-
tio

n
an

d
D

ep
lo

ym
en

t

A
na

ly
si

s,
D

es
ig

n,
Im

pl
em

en
ta

-
tio

n
an

d
D

ep
lo

ym
en

t

A
na

ly
si

s,
D

es
ig

n,
Im

pl
em

en
ta

-
tio

n

A
na

ly
si

s
an

d
D

es
ig

n
A

na
ly

si
s

an
d

D
es

ig
n

A
na

ly
si

s
an

d
D

es
ig

n
A

na
ly

si
s

an
d

D
es

ig
n,

Im
pl

em
en

ta
-

tio
n

A
na

ly
si

s,
D

es
ig

n,
Im

pl
em

en
ta

-
tio

n

A
na

ly
si

s,
D

es
ig

n,
Im

pl
em

en
ta

-
tio

n
an

d
D

ep
lo

ym
en

t
A

pp
lic

at
io

n
do

m
ai

n
In

de
pe

nd
en

t
In

de
pe

nd
en

t
D

ep
en

de
nt

-
H

ol
on

ic
m

an
uf

ac
tu

r-
in

g
sy

st
em

s

In
de

pe
nd

en
t

In
de

pe
nd

en
t

In
de

pe
nd

en
t

In
de

pe
nd

en
t

D
ep

en
de

nt
-

ad
ap

tiv
e

sy
st

em
s

In
de

pe
nd

en
t

M
od

el
-r

el
at

ed

O
C

M
A

S
vs

.
A

C
M

A
S

A
C

M
A

S
bu

t
R

ol
e-

or
i-

en
te

d
an

al
ys

is

O
C

M
A

S
(s

tr
uc

tu
re

an
d

im
pl

ic
itl

y
no

rm
s)

O
C

M
A

S
(s

tr
uc

tu
re

an
d

im
pl

ic
itl

y
so

ci
al

no
rm

s)
,h

ol
on

ic

O
C

M
A

S
(s

oc
ia

l
no

rm
s

an
d

st
ru

ct
ur

e)

O
C

M
A

S
(s

tr
uc

tu
re

)
O

C
M

A
S

(s
tr

uc
tu

re
)

A
C

M
A

S
A

C
M

A
S

O
C

M
A

S
(s

tr
uc

tu
re

an
d

im
pl

ic
itl

y
so

ci
al

no
rm

s)
,h

ol
on

ic

N
um

be
r

of
ab

st
ra

ct
io

n
le

ve
ls

1
1

n
(a

ge
nt

co
m

-
po

si
tio

n)
1

n
(r

ol
e

hi
er

ar
ch

y)
1

1
2

(l
oc

al
an

d
gl

ob
al

)
n

(o
rg

an
is

at
io

na
l

hi
er

ar
ch

y
an

d
ag

en
t

co
m

po
si

tio
n)

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 299

Ta
bl

e
4

co
nt

in
ue

d

C
ri

te
ri

a
PA

SS
I

IN
G

E
N

IA
S

A
N

E
M

O
N

A
G

A
IA

R
O

A
D

M
A

P
T

R
O

PO
S

PR
O

M
E

T
H

E
U

S
A

D
E

L
FE

A
SP

E
C

S

Sy
st

em
–

en
vi

ro
nm

en
t

in
te

rf
ac

e

Y
es

,r
es

ou
rc

e
m

od
el

lin
g

Y
es

,
en

vi
ro

nm
en

t
m

od
el

Y
es

,
en

vi
ro

nm
en

t
m

od
el

Im
pl

ic
it,

(s
en

so
rs

an
d

ef
fe

ct
or

s)

Y
es

,
en

vi
ro

nm
en

t
m

od
el

N
o

Y
es

,p
er

ce
pt

s
an

d
ac

tio
ns

de
sc

ri
pt

or

Y
es

,d
et

ai
le

d
ar

ch
ite

ct
ur

e
do

cu
m

en
t

Y
es

,I
R

I
(b

ou
nd

ar
y

ro
le

s)
an

d
O

D
D

m
od

el
s

K
no

w
le

dg
e

m
od

el
Y

es
Y

es
Y

es
N

o
Y

es
N

o
N

o
N

o
Y

es

Fo
rm

al
fo

un
da

tio
ns

N
o

N
o

N
o

N
o

N
o

Y
es

,i
*

an
d

fo
rm

al
tr

op
os

N
o

N
o

Pa
rt

ia
lly

,O
Z

S

Su
pp

or
ti

ve
-f

ea
tu

re

St
an

da
rd

s
in

te
gr

at
io

n
SP

E
M

,U
M

L
,

FI
PA

U
P,

SP
E

M
,

M
D

D
,M

O
F,

U
M

L
,F

IP
A

U
P,

SP
E

M
,

FI
PA

,U
M

L
SP

E
M

a
–

–
–

U
P,

SP
E

M
,

U
M

L
,F

IP
A

SP
E

M
,U

M
L

,
FI

PA

To
ol

s:
ID

E
M

et
am

et
h

an
d

PT
K

ID
K

–
–

R
eb

el
T-

To
ol

PD
T

O
pe

nT
oo

l
Pl

an
ne

d

To
ol

s:
pl

at
fo

rm
s

an
d

lib
ra

ri
es

G
ui

de
lin

es
,

to
ol

fo
r

JA
D

E
an

d
FI

PA
-O

S

To
ol

s
fo

r
JA

D
E

,B
D

I
ag

en
ts

G
ui

de
lin

es
fo

r
JA

D
E

,
PR

O
SA

G
ui

de
lin

es
fo

r
JA

D
E

G
ui

de
lin

es
fo

r
JA

D
E

–
JA

C
K

–
JA

N
U

S

O
nt

ol
og

y
Y

es
N

o
N

o
N

o
N

o
N

o
N

o
N

o
Y

es

O
pe

n
sy

st
em

s
N

o
N

o
N

o
Y

es
Y

es
N

o
N

o
Y

es
Y

es

D
yn

am
ic

st
ru

ct
ur

e
N

o
N

o
N

o
N

o
N

o
N

o
N

o
N

o
Y

es

a
N

ot
do

ne
by

pr
im

ar
y

au
th

or
s

123

300 Auton Agent Multi-Agent Syst (2010) 20:260–304

aspecs adopts the first perspective and in the set of existing approaches, aalaadin is
probably the one that shares most common points with aspecs about these organisational
concepts. message or ingenias consider the distinction between Role and Agent as analo-
gous to that between Interface and Object Class. Kristensen and Osterbye [41], studying the
notion of role for objects, called such a vision of role as the Filter Metaphor and discussed the
problems related to such an approach: “This is mistaken because the filter metaphor implies
that the persons12 has all the properties from the outset, and we choose to see only some of
them. This neglects the important meaning behind roles that the properties are extrinsic,—the
person only has them because of the role”. In aspecs, the role is emphasised as a fundamental
entity spreading from requirements to implementation. It is an expected behaviour (a set of
tasks ordered by a plan) and a set of rights and obligations in the organisation context (refer
to Sect. 2.2 for more details). In the implementation phase, the role exists as a complete entity
disposing of its own characteristics and behaviour.

Abstraction levels. Complex systems are often a nested network of complex adaptive sys-
tems. Indeed, at the very heart of the definition of a complex system we find the notion of
emergent behaviour and the possibility of looking at it at different levels of abstraction/obser-
vation. In a complex system what we see at one level of abstraction as a whole, might be
decomposed in a set of entities at a lower level. Where to set the limit, what to consider
as an indivisible component has always been, at least in mas design, a question of point of
view. A design process aimed at modelling such complex systems has to provide a mean for
catching the various levels of abstraction. Only few design approaches enable the integration
of different abstraction levels in a single model. roadmap provides a revised version of the
gaia role model to include various levels of abstraction during the analysis phase and allows
an iterative decomposition of the system.

When considering agents as atomic, mas designers are forced to capture only one of a mul-
titude of possible levels of abstraction. Conversely, we take into consideration multiple levels
of abstraction by introducing the concept of holon as a building block, and the description
of the holarchy as a structure for composing multi-level holonic organisations.

High-level features. According to our knowledge, aspecs is the only process that supports
both open and dynamic systems and merges an agent-oriented approach with a knowledge-
engineering approach based on the prominent role of ontology.

In its first release, gaia was mainly designed to handle small-scale and closed systems.
This choice made it inappropriate for engineering complex open systems [38], gaia has
then been extended by introducing the support for open large systems. However, gaia
still does not consider a holistic model of Domain Knowledge (structure, dependencies
between knowledge elements). This forbids sharing system knowledge, reusing, extend-
ing and maintaining it in a modular fashion [38]. roadmap extends gaia by introducing a
knowledge model for the description of the system domain knowledge. Knowledge compo-
nents are then assigned to roles. In this sense, we use a similar approach in aspecs. However,
in aspecs the ontology is considered as a reference point and a source of guidelines for
many process activities. Moreover in aspecs the general description of the problem knowl-
edge is clearly separated from the knowledge that is specific to the solution. In a certain
sense, we may consider that in aspecs we adopt a model driven approach even for sys-
tem knowledge, this point of view encourages knowledge reusability, maintainability and
sharing.

12 Person here is meant as the entity playing the role.

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 301

To conclude, the most important features of the aspecs design process are:

1. Its intrinsic ability to catch the various levels of abstraction of a complex system; this
occurs during the analysis phase by using an organisational hierarchy and in the design
phase by using a holarchy.

2. Its aspiration to span the entire software development process from requirements to
deployment, and to completely define the process and its various components (since a
detailed process description is too huge to be reported in a scientific paper, all the details
are reported in the aspecs website).

3. Its ambition to ease the reuse and the extension of domain and application knowledge
and models by the use of ontologies; its consideration of the organisation concept as a
reusable module independent from the agent architecture (i.e. an organisational design
pattern).

4. Its integration of multiple viewpoints in the analysis and design of a system by using an
organisational perspective throughout the life-cycle and its combination of holonic and
classical agent-oriented approaches with knowledge-engineering-based approaches.

5. Its explicit modelling of the system-environment relationship by using boundary roles,
capacities and resources to provide a holistic description of the system environment.
This aspect eases to handle environment changes and thus facilitates the deployment in
dynamic and heterogeneous environments.

7 Conclusions and future works

This paper presents the aspecs software development process also with the help of a concrete
case study from requirement analysis activities to deployment of the system on a specific
platform developed in our lab. aspecs covers the entire software engineering process and it
is designed for the development of complex software systems, especially those exhibiting a
hierarchical structure.

The respect and integration of the most diffused AOSE domain standard specifications is
one of the basis of our approach. The description of the development process is thus based
on spem (reported on the website), graphical notations are based on uml, and FIPA stan-
dards are also largely adopted. aspecs notation extends uml especially to take into account
organisational and holonic concepts.

aspecs allows the modelling of a system with an arbitrary number of abstraction levels
through a hierarchical behavioural decomposition based on roles and organisations. The
system is recursively decomposed down to a level where behaviours are simple enough to
be manageable by atomic easy-to-implement entities. Contributions between two adjacent
levels of abstraction are modelled thanks to the relation between the concepts of capacity
and service.

Thanks to the introduction of the notion of capacity, organisations and their associated
roles may be defined without making any assumptions on entities’ architecture. This enables
the definition of generic organisation models that facilitates design reusability and extensions.

Concerning the environment that is an essential part of mas, aspecs makes explicit (by
means of boundary roles) the representation of interactions between the system and the
necessary environmental entities without making any assumptions on the concrete environ-
ment structure. The use of specific capacities as an interface between the environment and
the system eases the deployment of applications on dynamic and heterogeneous environ-
ments.

123

302 Auton Agent Multi-Agent Syst (2010) 20:260–304

Domain knowledge is explicitly encoded in the Problem and Solution ontologies. aspecs
thus presents a holistic model of the structure of the domain knowledge as well as the inter-
actions and dependencies of knowledge components in the system. This approach allows an
easy sharing, reusability, extension and maintainability of system knowledge in a modular
manner.

The chosen case study confirms that the holonic organisational approach is able to deal
with complex software development and proves the scalability and modularity of the proposed
approach.

aspecs is part of a larger effort aiming at providing a complete methodology with the
associated set of notations and tools to support design activities from requirement analysis
to code generation and deployment. Two major tools are currently under development in our
lab. The first is the Janus platform that is used to implement our holonic applications. The
second is Janeiro, a case tool that deals with the analysis and design aspects.

Further works will particularly focus on the integration of formal notations and methods
especially OZS. OZS (Object-Z and Statechart [31]) has been already used for role behaviour
description where roles are formally described by using an Object-Z class. In these cases,
the behaviour of the role is described using a statechart where associated methods refer to
formal defined ones. Procedures to automatically generate templates of role code from OZS
behavioural specifications are also under development (they will implement an automatic
translation of statecharts to Java code).

Acknowledgements Authors would like to thank Sebastiàn Rodriguez for having substantially contributed
to this work by proposing a framework for the conception of Holonic multiagent systems that is at the basis
of the aspecs metamodel.

References

1. Software engineering body of knowledge. (2004). IEEE Computer Society.
2. Argente, E., Julian, V., & Botti, V. (2006). Multi-agent system development based on organizations. In

CoOrg’06, Electronic Notes in Theoretical Computer Science (Vol. 150, pp. 55–71). Elsevier.
3. Bernon, C., Cossentino, M., & Pavón, J. (2005). An overview of current trends in European aose research.

Informatica, 29(4), 379–390.
4. Bernon, C., Gleizes, M.-P., Peyruqueou, S., & Picard, G. (2002). ADELFE, a methodology for adaptive

multi-agent systems engineering. In ESAW, LNAI (Vol. 2577, pp. 156–169). Madrid, Spain: Springer-
Verlag.

5. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., & Perini, A. (2004) TROPOS: An agent-
oriented software development methodology. Journal of Autonomous Agents and Multi-Agent Systems,
8(3), 203–236.

6. Brussel, H. V., Wyns, J., Valckenaers, P., Bongaerts, L., & Peeters, P. (1998). Reference architecture for
holonic manufacturing systems: PROSA. Computers in Industry, 37, 255–274.

7. Caire, G., Coulier, W., Garijo, F. J., Gomez, J., Pavón, J., Leal, F., et al. (2002). Agent oriented analysis
using message/uml. In M. Wooldridge, G. Weiß, & P. Ciancarini (Eds.), AOSE 2001, LNCS (Vol. 2222,
pp. 119–135). Springer Verlag.

8. Cernuzzi, L., Cossentino, M., & Zambonelli, F. (2005). Process models for agent-based development.
Journal of Engineering Applications of Artificial Intelligence, 18, 205–222.

9. Chella, A., Cossentino, M., Sabatucci, L., & Seidita, V. (2006). Agile PASSI: An agile process for design-
ing agents. International Journal of Computer Systems Science & Engineering. Special issue on Software
Engineering for Multi-Agent Systems, 21(2), 133–144.

10. Chung, L., Nixon, B. A., & Yu, E. S. K. (1997). Dealing with change: An approach using non-functional
requirements. Requirements Engineering, 1(4), 238–260.

11. Cockburn, A. (1997). Structuring use cases with goals. Journal of Object-Oriented Programming, 9(6),
56–62.

12. Cockburn, A. (2000). Writing effective use cases. Addison-Wesley.

123

Auton Agent Multi-Agent Syst (2010) 20:260–304 303

13. Cossentino, M. (2005). From requirements to code with the PASSI methodology. In B. Henderson-
Sellers & P. Giorgini (Eds.), Agent-oriented methodologies (Chap. IV, pp. 79–106). Hershey, PA, USA:
Idea Group Publishing.

14. Cossentino, M., Gaglio, S., Garro, A., & Seidita, V. (2007). Method fragments for agent design methodol-
ogies: From standardization to research. International Journal on Agent Oriented Software Engineering,
1(1), 91–121.

15. Cossentino, M., Galland, S., Gaud, N., Hilaire, V., & Koukam, A. (2008). How to control emergence
of behaviours in a holarchy. In Self-Adaptation for Robustness and Cooperation in holonic multi-
agent systems (SARC), workshop of the second IEEE international conference on Self-Adaptive and
Self-Organizing Systems (SASO). Venice, Italy: Isola di San Servolo.

16. Coutinho, L. D. R., Sichman, J. S. A., & Boissier, O. (2005). Modeling organization in MAS: A compar-
ison of models. In SEAS, Uberlândia.

17. Dahl, R. A. (1971) . Polyarchy: Participation and opposition. New Haven: Yale University Press.
18. Dignum, M., Vazquez-Salceda, J., & Dignum, F. (2005). OMNI: Introducing social structure, norms and

ontologies into agent organizations. In PROMAS@AAMAS, LNAI (Vol. 3346, pp. 181–198). Springer.
19. Esteva, M., Rodríguez-Aguilar, J. A., Sierra, C., Garcia, P., & Arcos, J. L. (2001). On the formal spec-

ifications of electronic institutions. In Agent mediated electronic commerce, the European agentLink
perspective (pp. 126–147). London, UK: Springer-Verlag.

20. Ferber, J. (1999). Multi-agent systems. An introduction to distributed artificial intelligence. London:
Addison Wesley.

21. Ferber, J., Gutknecht, O., & Michel, F. (2004). From agents to organizations: An organizational view of
multi-agent systems. In AOSE-IV@AAMAS03, LNCS (Vol. 2935, pp. 214–230). Springer Verlag.

22. Foundation for Intelligent Physical Agents. (2001). FIPA RDF content language specification. Experi-
mental, XC00011B.

23. Foundation for Intelligent Physical Agents. (2002). FIPA ACL message structure specification. Standard,
SC00061G.

24. Foundation for Intelligent Physical Agents. (2002). FIPA communicative act library specification. Stan-
dard, SC00037J.

25. Gandon, F. (2002). Ontology engineering: a survey and a return on experience. Rapport, Inria Research
Report.

26. Gaud, N., Galland, S., Hilaire, V., & Koukam, A. (2008). An organisational platform for holonic and
multiagent systems. In PROMAS-6@AAMAS’08, Estoril, Portugal.

27. Gaud, N., Hilaire, V., Galland, S., Koukam, A., & Cossentino, M. (2008). A verification by abstraction
framework for organizational multi-agent systems. In AT2AI-6@AAMAS’08, Estoril, Portugal.

28. Gerber, C., Siekmann, J., & Vierke, G. (1999). Holonic multi-agent systems. Technical Report DFKI-RR-
99-03, DFKI-GmbH.

29. Giunchiglia, F., Mylopoulos, J., & Perini, A. (2002). The Tropos software development methodology:
Processes, models and diagrams. Technical Report 0111-20, ITC-IRST. Submitted AAMAS Conference
2002. A Knowledge Level Software Engineering 15.

30. Gruber, T. (1995). Toward principles for the design of ontologies used for knowledge sharing. Interna-
tional Journal Human-Computer Studies, 43(5–6), 907–928.

31. Gruer, P., Hilaire, V., Koukam, A., & Rovarini, P. (2004). Heterogeneous formal specification based on
object-z and statecharts: Semantics and verification. Journal of Systems and Software, 70(1–2), 95–105.

32. Gutknecht, O., & Ferber, J. (2000). Madkit: A generic multi-agent platform autonomous agents. In
AGENTS 2000 (pp. 78–79). Barcelona: ACM Press.

33. Hannoun, M., Boissier, O., Sichman, J. S., & Sayettat, C. (2000). MOISE: An organizational model for
multi-agent systems. In Advances in Artificial Intelligence, IBERAMIA-SBIA, Brazil (pp. 156–165).

34. Henderson-Sellers, B. (2003). Method engineering for OO systems development. Communications of the
ACM, 46(10), 73–78.

35. Hilaire, V., Koukam, A., Gruer, P., & Müller, J.-P. (2000). Formal specification and prototyping of multi-
agent systems. In A. Omicini, R. Tolksdorf, & F. Zambonelli (Eds.), ESAW, LNAI (No. 1972). Springer
Verlag.

36. Iglesias, C., Garijo, M., Gonzalez, J., & Velasco, J. (1998). Intelligent agents IV: Agent theories, archi-
tectures, and languages. In Analysis and design of multi-agent systems using MAS-CommonKADS, LNAI
(Vol. 1365, pp. 313–326). Springer-Verlag.

37. Jennings, N. (2001). An agent-based approach for building complex software systems. Communications
of the ACM, 44(4), 35–41.

38. Juan, T., Pearce, A., & Sterling, L. (2002). ROADMAP: Extending the Gaia methodology for complex
open systems. In AAMAS ’02: Proceedings of the first international joint conference on Autonomous

123

304 Auton Agent Multi-Agent Syst (2010) 20:260–304

agents and multiagent systems, Bologna, Italy (pp. 3–10). New York: ACM. http://doi.acm.org/10.1145/
544741.544744. ISBN: 1-58113-480-0.

39. Koestler, A. (1967). The ghost in the machine. Hutchinson.
40. Kolp, M., Giorgini, P., & Mylopoulos, J. (2006). Multi-agent architectures as organizational structures.

Autonomous Agents and Multi-Agent Systems, 13(1), 3–25.
41. Kristensen, B., & Osterbye, K. (1996). Roles: Conceptual abstraction theory and practical language issues.

Theory and Practice of Object Systems, 2(3), 143–160.
42. Object Management Group. (2003). MDA guide, v1.0.1, OMG/2003-06-01.
43. Odell, J., Nodine, M., & Levy, R. (2005). A metamodel for agents, roles, and groups. In J. Odell, P.

Giorgini, & J. Müller (Eds.), AOSE, LNCS. Springer.
44. Omicini, A. (2000). SODA: Societies and infrastructures in the analysis and design of agent-based sys-

tems. In AOSE, LNCS (Vol. 1957, pp. 185–193). Springer-Verlag.
45. Padgham, L., & Winikoff, M. (2002). Prometheus: A methodology for developing intelligent agents. In

AOSE.
46. Pavón, J., Gómez-Sanz, J., & Fuentes, R. (2005). The INGENIAS methodology and tools. In Agent-ori-

ented methodologies (pp. 236–276). NY, USA: Idea Group Publishing.
47. Sauvage, S. (2004). Agent oriented design patterns: A case study. In AAMAS ’04 (pp. 1496–1497). Wash-

ington, DC, USA: IEEE Computer Society.
48. Searle, J. (1969). Speech acts. Cambridge, UK: Cambridge University Press.
49. Seidita, V., Cossentino, M., Hilaire, V., Gaud, N., Galland, S., Koukam, A., et al. (2009). The metamodel:

A starting point for design processes construction. International Journal of Software Engineering and
Knowledge Engineering (IJSEKE) (in press).

50. Shen, W., Maturana, F., & Norrie, D. H. (2000). MetaMorph II: An agent-based architecture for distributed
intelligent design and manufacturing. Journal of Intelligent Manufacturing, 11(3), 237–251.

51. Simon, H. A. (1996). The science of artificial (3rd ed.). Cambridge, Massachusetts: MIT Press.
52. Sommerville, I. (2004). Software engineering (7th ed.). International Computer Science Series. Addison

Wesley, Pearson Education.
53. SPEM. (2007). Software process engineering metamodel specification, v2.0, final adopted specification,

ptc/07-03-03. Object Management Group.
54. Tran, Q.-N. N., & Low, G. C. (2005). Agent-oriented methodologies, Comparison of Ten Agent-Oriented

Methodologies (Chap. XII, pp. 341–367). Idea Group.
55. Wilber, K. (1995). Sex, ecology, spirituality. Shambhala.
56. Wooldridge, M., Jennings, N. R., & Kinny, D. (2000) The Gaia methodology for agent-oriented analysis

and design. Autonomous Agents and Multi-Agent Systems, 3(3), 285–312.
57. Zambonelli, F., Jennings, N. R., & Wooldridge, M. (2003). Developing multiagent systems: The GAIA

methodology. ACM Transactions on Software Engineering and Methodology, 12(3), 317–370. http://doi.
acm.org/10.1145/958961.958963.

123

http://doi.acm.org/10.1145/544741.544744
http://doi.acm.org/10.1145/544741.544744
http://doi.acm.org/10.1145/958961.958963
http://doi.acm.org/10.1145/958961.958963

	ASPECS: an agent-oriented software processfor engineering complex systems
	Abstract
	1 Introduction
	2 A quick overview of ASPECS
	2.1 aspecs: the process
	2.2 aspecs: the metamodel and key concepts
	2.3 Case study: simulation of an industrial plant

	3 System requirements analysis phase
	3.1 Domain Requirements Description (DRD)
	3.2 Problem Ontology Description (POD)
	3.3 Organisation Identification (OID)
	3.4 Interactions and Role Identification (IRI)
	3.5 Scenario Description (SD)
	3.6 Role Plan (RP)
	3.7 Capacity Identification (CI)

	4 Agent society design phase
	4.1 Solution Ontology Description (SOD)
	4.2 Agent Identification (AI)
	4.3 Agent Architecture Description (AAD)
	4.4 Communication Ontological Description (COD)
	4.5 Role Behaviour Description (RBD)
	4.6 Protocol description (PD)
	4.7 Organisation Dependencies Description (ODD)
	4.8 Role Constraints Identification (RCI)
	4.9 Agent Plan Description (APD)
	4.10 Holarchy Design (HD)

	5 Implementation and deployment phase
	5.1 Holon architecture definition
	5.2 Code reuse
	5.3 Code production of organisations and roles
	5.4 Testing activities
	5.5 Code production of holons
	5.6 Deployment configuration

	6 Comparisons with existing agent-oriented methodologies
	7 Conclusions and future works
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

